13929258449

admin@satnano.com

검색

검색

  • 23

    Aug

    비파괴 검사 분야에 나노 흑색 자성 산화철의 응용

    장점 나노 제2철 산화물 흑색 자성 분말: 1. 나노 산화철 흑색 자성 분말은 투자율이 높고 보자력이 낮고 잔류성이 낮습니다.2. 나노 fe3o4 블랙 마그네틱 파우더 분산성이 좋고 덩어리지지 않고 자성이 강하다. 3. 1차원 나노 산화철 흑색 자성 분말은 투자율과 이동성이 좋다. 4. 다른 차원의 나노 물질을 혼합하면 자분 탐지 기술의 성능을 향상시킬 수 있습니다. 5. 나노 제2철 산화물 흑색 자성 분말은 유기 물질과 결합하여 나노 자성 물질을 변형시킬 수 있습니다. 6. 나노 제2철 산화물 흑색 자성 분말은 동일한 입자 크기를 달성하고 특수 테스트의 요구를 충족시킬 수 있습니다. 7. 나노 제2철 산화물 흑색 자성 분말의 균열 검출률이 높고 작은 균열 검출 성능이 우수하다. nano fe3o4 자성 분...
    더 읽어보기
  • 23

    Aug

    착색 된 nano fe3o4는 화장품, 장난감, 수공예품 및 기타 산업 분야에서 사용할 수 있습니다

    (1) 블랙 나노 fe3o4 산화철: 크기: 30nm, ph: 8-10, ssa: 4-5g/cm3흑색 나노 제2철 산화물은 녹는점이 1597°c인 혼합 원자가 산화물입니다. (2) 브라운 나노 제2철 산화물: 크기: 30nm, PH:2-4, ssa:50-90g/cm3갈색 나노 제2철 산화물은 자성 나노 물질로 자성 표적 약물 전달 시스템을 형성하기 위해 다양한 항암제의 담체로 널리 사용됩니다. 갈색 나노 사산화철은 건강 관리 효과가 있으며 화장품 산업에서 널리 사용될 수 있습니다. 동시에, 자기 나노미터 fe3o4 자기장은 인간의 신경계, 심장 기능, 혈액 구성, 혈관계, 혈액 지질, 혈액 유변학, 면역 기능, 내분비 기능 및 활동에 영향을 미칩니다. (3) 레드 나노 제2철 산화물 크기: 100nm, PH...
    더 읽어보기
  • 23

    Aug

    윤활유에 나노 란탄 산화물의 적용은 무엇입니까

    란탄은 희토류 산화물에 속하며 경희토류의 중요한 생성물 중 하나이다.물리적, 화학적 특성이 좋기 때문에 민간, 군사 및 첨단 기술 분야에서 널리 사용되었습니다.예를 들어, la2o는 희귀 유리, 세라믹, 촉매, 형광체, 레이저, 발열체, 음극 재료 및 전기 접점의 응용 분야에서 지속적으로 개발되었습니다.란탄 산화물은 또한 배기 가스 배출을 어느 정도 감소시켜 환경을 보호할 수 있습니다.그러나 윤활유 첨가제로서 나노라오에 대한 연구는 거의 없다.본 논문에서는 나노-라오 입자를 500sn 기유에 첨가제로 첨가하여 마찰 특성을 연구함으로써 윤활제 첨가제로 나노 입자의 사용 범위를 더욱 확장하고 마모 및 마찰 방지 메커니즘이 매우 우수하다는 연구를 계속할 것입니다.중요한 이론적, 실천적 의미. 1.나노 입자의 선택...
    더 읽어보기
  • 21

    Dec

    나노 물질의 특징은 무엇입니까?

    의 독특한 속성 나노물질 포함하다: ①표면 효과 구형 입자의 표면적은 직경의 제곱에 비례하고 부피는 직경의 세제곱에 비례하므로 비표면적(표면적/부피)은 직경에 반비례합니다. 입자 직경이 작아질수록 비표면적이 크게 증가하여 표면 원자의 비율이 크게 증가함을 나타냅니다. 원자 간 거리가 3'10-4 미크론이면 표면 원자는 표면의 대략적인 추정치인 한 층만 차지할 것입니다. 원자의 백분율은 아래 표를 참조하십시오. 초미세 입자의 표면 원자 백분율과 입자 직경의 관계 직경('10-4 미크론) 10 50 100 1000 총 양성자 수 30 4′ 103 3′ 104 3′ 106 표면 양성자 퍼센트 100 40 20 2 위의 표에서 직경이 0.1 마이크론보다 큰 입자에 대한 표면 효과는 무시할 수 있음을 알 수 있습니다...
    더 읽어보기
  • 04

    Mar

    은 코팅된 구리 분말이 널리 사용되며, 화학 복합 방법이 주요 제조 공정입니다.

    최근 몇 년 동안, 은 코팅 구리 분말 , 칩 전자부품의 전극, 뿐만 아니라 촉매 및 전자 페이스트. 분야에서도 현재 널리 사용되고 있다, 우리나라에서 사용되는 전자 페이스트는 기본적으로 미크론 수준의 순수 고가이며 주로 수입되는 은 분말,. 미크론 스털링 은 분말은 전자 제품의 대규모 기계 생산 공정에서 입자 침강 문제가 있습니다. 은 코팅 구리 분말은 이 문제를 효과적으로 해결할 수 있습니다.. 3] 은의 양과 제품 비용을 줄일 수 있고, 시장 전망이 넓습니다.. 은 코팅 구리 분말은 많은 용도가 있습니다 , 그러나 그 준비 공정은 더욱 개선되어야 한다. 변위 도금 공정이 간단하고 비용이 낮으나, 도금층이 상대적으로 느슨하고, 증착 속도 조절이 용이하지 않다. 무전해 도금층의 두께가 균일하고 핀홀 발생률...
    더 읽어보기
  • 19

    Apr

    나노 분말 산업의 중요한 조건은 무엇입니까

    나노물질은 전통적인 물질이 가지고 있지 않은 많은 이국적인 특성을 나타냅니다. 우리가 가장 먼저 알아야 할 것은 나노미터(주로 100nm 미만을 나타냄) 구성의 나노미터가 4가지 주요 효과를 갖는다는 것입니다. 1. 작은 사이즈 효과 결정 주기성의 경계 조건이 파괴됩니다. 비정질 나노입자의 표면층 근처의 원자 밀도가 감소,하여 소리, 빛, 전기, 자기, 및 열. 특성의 변화 입자 크기의 양적 변화, 특정 조건에서 입자 특성의 정성적 변화. 입자 크기 감소로 인한 거시적 물리적 특성의 변화를 나노 입자의 작은 크기 효과.라고 합니다, 크기가 작아지고, 비표면적도 크게 증가하여, 자기 특성, 내부 압력, 광 흡수, 열 저항, 화학 활성, 촉매 및 융점 일반 입자와 비교하여 큰 변화를 겪었으며, 시리즈의 새로운 ...
    더 읽어보기
  • 28

    Jul

    세슘 텅스텐 청동 나노 입자로 스마트 단열의 시대가 도래했습니다.

    유리 단열 코팅은 하나 이상의 나노 분말 재료로 준비된 코팅의 일종입니다. 사용된 나노 물질은 특수한 광학적 특성을 가지고 있어 적외선 영역과 자외선 영역에서 차단율이 높다. , 가시 영역에서 높은 투과율을 가지고 있습니다. 소재의 투명하고 단열적인 특성을 이용하여 친환경 고성능 수지와 혼합하고 특수 가공기술을 통해 가공하여 에너지 절약형 친환경 단열 코팅제를 제조합니다. 유리 조명에 영향을 미치지 않는다는 전제하에 여름에는 에너지 절약 및 냉각 효과를 얻을 수 있으며 겨울에는 에너지 절약 및 보온 효과를 얻을 수 있습니다. 최근 몇 년 동안 새로운 환경 친화적인 단열재를 탐색하는 것은 항상 연구자들이 추구하는 목표였습니다. 이러한 재료는 가시광선 투과율이 높고 근적외선을 효과적으로 흡수하거나 반사할 수 있...
    더 읽어보기
  • 11

    Aug

    보호를 위한 금속 알루미늄 나노 입자의 패시베이션 층

    분말 저장, 운송 및 사용 과정에서 나노 알루미늄 분말 은 활성이 낮고 외부 환경 요인(온도, 습도 등)의 영향을 덜 받아 제품에 대해 안정적인 성능을 갖기를 희망하는 경우가 많습니다. 장기. 한편, 높은 에너지 방출율과 우수한 연소 효율을 얻기 위해서는 고체 로켓 추진체 에서 높은 활성을 나타내는 것이 바람직하다. 따라서 나노알루미늄 분말의 활성 조절 및 항산화 특성에 대한 연구는 복잡하고 근본적인 문제이다. 나노금속분말 을 생산하는 과정에서 , Hongwu Nano는 입자 표면에 패시베이션 층/산화막을 만듭니다. 이러한 산화피막의 존재로 나노금속입자를 보호할 수 있고 안정성이 향상된다. 패시베이션층이란? 패시베이션 층은 패시베이션된 부분입니다. 패시베이션은 금속 표면을 쉽게 산화되지 않는 상태로 전환시켜...
    더 읽어보기
  • 21

    Sep

    분산제 분산 나노 입자의 기본 원리는 무엇입니까

    안정적인 분산 시스템 의 형성은 정전기적 반발력 즉, 입자 표면에 흡착된 음전하가 서로 반발하여 입자 간의 흡착/응집을 방지하여 최종적으로 큰 입자를 형성하고 성층화/침강되는 것을 방지하고, 그러나 또한 사용합니다. 음전하를 흡착한 입자가 서로 접근함에 따라 서로 미끄러지는 입체 장애 효과 이론. 이러한 입체 장애 계면활성제는 일반적으로 비이온성 계면활성제이다. 정전기 반발 및 입체 장애 이론을 유연하게 사용하여 매우 안정적인 분산 시스템을 형성할 수 있습니다. 폴리머 흡착층은 특정 두께를 가지고 있어 주로 폴리머의 용매화층에 의존하여 입자의 상호 흡착을 효과적으로 차단할 수 있습니다. 분산제의 메커니즘: 1. 고체 입자의 표면에 흡착되어 액체-액체 또는 고체-액체 사이의 계면 장력을 감소시킵니다. 응집된 ...
    더 읽어보기
  • 28

    Feb

    CNTS가 로딩된 금속 나노 입자의 제조 방법은 무엇입니까?

    CNTS가 담지된 금속나노입자의 제조방법은 크게 물리적 제조방법과 화학적 제조방법이 있다. 가장 일반적으로 사용되는 것은 화학적 준비 방법입니다. 화학적 제조 방법은 일반적으로 담체 CNTS에 금속 나노 입자가 균일하게 로딩됩니다. 화학적 준비의 일반적인 과정은 금속 프론트 드라이브가 원자로 복원되고 금속 원자가 나노 입자로 성장하고 담체 또는 안정제의 작용에 의해 특정 입자 크기의 촉매를 얻는 것입니다. 다른 제조 방법은 다른 크기와 다른 모양의 촉매를 얻을 수 있습니다. 구체적인 방법은 다음과 같습니다. 1. 침수 감소 방법 침지 환원법은 부하 촉매를 제조하는 전통적인 방법입니다. CNTS 부하 금속 나노 입자 촉매를 제조하는 구체적인 제조 과정은 다음과 같습니다. 특정 온도 및 특정 pH에서 금속 전면...
    더 읽어보기
  • 20

    Oct

    나노입자 코팅의 두께를 측정하는 방법

    나노입자의 코팅층 두께를 측정하려면 고급 장비와 기술을 사용해야 합니다. 가능한 측정 방법은 다음과 같습니다. 투과전자현미경(TEM): 고밀도 전자빔을 활용하여 나노입자의 구조와 특성을 관찰하고 측정하는 현미경입니다. 코팅층의 두께 측정을 위해 TEM은 입자의 단면 이미지를 관찰하여 코팅층의 두께를 결정할 수 있습니다. 주사전자현미경(SEM): 이 현미경은 나노입자의 구조와 특성도 관찰하고 측정할 수 있습니다. TEM과 달리 SEM은 투과된 전자빔 대신 전자빔을 사용합니다. SEM을 이용하면 샘플의 단면 이미지를 준비하여 코팅층의 두께를 확인할 수 있습니다. XPS(X선 광전자 분광법): XPS는 표면의 화학적 분석을 수행할 수 있습니다. 입자 표면의 X선 스펙트럼을 분석하면 코팅층의 조성과 두께를 알 수 ...
    더 읽어보기
  • 05

    Jan

    금속나노입자 보호층의 역할은 무엇인가

    금속나노입자는 의학, 전자, 에너지, 환경 등 다양한 분야에 응용이 가능한 널리 사용되는 소재이다. 크기가 매우 작고 표면적이 넓어 많은 재료의 성능을 향상시킬 수 있습니다. 그러나 금속 나노입자의 표면은 매우 활동적이고 주변 환경과 쉽게 반응하는 경우가 많으므로 표면을 보호하기 위한 보호층이 필요합니다. 이 기사에서는 금속 나노입자의 보호층의 역할을 탐구합니다. 보호층은 일반적으로 무기 또는 유기 물질로 구성된 금속 나노입자의 표면을 덮는 얇은 막이다. 이 박막은 금속 나노입자의 표면을 보호하고 주변 환경과 반응하는 것을 방지할 수 있습니다. 특히 촉매반응에서는 금속나노입자의 표면이 반응물과 반응하는 경우가 많으며, 보호층은 이러한 반응이 일어나는 것을 방지하여 반응의 선택성과 효율성을 향상시킬 수 있다....
    더 읽어보기
< 1 2 3
[  총  3  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!