13929258449

admin@satnano.com

블로그

블로그

  • 02

    Aug

    나노 세슘 텅스텐 산화물은 유리 단열에 중요한 역할을 합니다.

    에너지 절약 기술의 보급 및 적용은 세계적으로 합의에 도달했으며 많은 국가에서 연속적으로 정책을 발표했습니다. 건물 에너지 소비에서 유리문과 창문을 통해 많은 부분이 손실됩니다. 마찬가지로 더운 여름에 자동차 유리를 통한 햇빛의 노출은 운전자와 승객에게 견디기 힘들며, 이는 차량 내부의 노화를 가속화하고 연료 소비를 크게 증가시키고 배기 가스를 증가시키며 환경을 손상시킵니다. 따라서 투명하고 단열성이 있는 유리 단열재를 찾을 필요가 있습니다. 세슘 텅스텐 산화물/세슘 텅스텐 청동 근적외선 및 자외선에 대한 흡수 효과가 우수하고 입자가 균일하고 분산성이 우수하고 환경 친화적이며 선택적 광선 투과율이 강하고 근적외선 차폐 성능이 우수하고 투명도가 높은 무기 나노 물질입니다. , 기존의 다른 투명 단열재와 차별화...
    더 읽어보기
  • 02

    Aug

    유리 절연용 나노 ATO 페이스트 제조 방법

    저탄소 경제가 글로벌 핫스팟이 되면서 에너지 절약 소재에 대한 선호도가 높아지고 있습니다. 건물 에너지 절약에서 유리의 광 투과 및 단열은 매우 중요한 문제입니다. 넓은 면적의 외부 창문과 투명한 천장, 자동차 창문 및 기타 행사가 있는 건물에서 햇빛의 열 복사는 에어컨의 에너지 소비를 증가시킵니다. , 엄청난 에너지 낭비를 초래합니다. 따라서 고효율 나노 단열 및 에너지 절약 코팅의 개발이 임박했으며 나노 투명 단열 코팅은 에너지 절약 및 환경 친화적 인 코팅의 새로운 선호도가되었습니다. 투명 단열 코팅의 핵심은 태양광에 대한 선택적 투과성을 갖는 나노 반도체 재료를 찾는 것입니다. 그 중 나노 ATO 주석 안티몬 산화물 가시광선 투과율과 적외선 차단성이 우수하여 이상적인 단열재입니다. 유리(건물 외벽 유...
    더 읽어보기
  • 02

    Aug

    세슘 도핑된 텅스텐 산화물 CSxWO3 유리와 일반 유리의 단열 테스트 비교

    적외선은 명백한 열 효과가 있어 주변 온도를 쉽게 높일 수 있습니다. 일반 건축 유리는 단열 효과가 없으며 필름을 통해서만 얻을 수 있습니다. 따라서 건축 유리, 자동차 필름, 옥외 시설 및 기타 표면은 단열 및 에너지 절약 효과를 달성하기 위해 단열재를 사용해야 합니다. 최근 몇 년 동안 산화텅스텐은 우수한 광전자 특성으로 인해 널리 주목받고 있으며, 세슘 원소가 도핑된 산화텅스텐 분말은 적외선 영역에서 강한 흡수 특성을 가지면서 동시에 가시광선의 투과율이 높다. 근적외선 흡수율이 가장 우수한 무기 나노분말, 나노세슘텅스텐청동 은 근적외선 영역(파장 800-1100nm)에서 강한 흡수 특성을 가질 뿐만 아니라 가시광선 영역(파장 380-780nm)과 자외선 영역(파장 200-380nm) 또한 강력한 차폐 ...
    더 읽어보기
  • 04

    Aug

    투명 단열 코팅에 사용되는 4가지 일반적인 나노 물질

    나노 단열 코팅 은 햇빛으로부터 자외선을 흡수하는 데 사용할 수 있으며 현재의 장식용 건물에 자주 사용됩니다. 수성 나노 투명 단열 코팅은 고효율 및 에너지 절약 효과가있을뿐만 아니라 녹색 환경 보호, 건강 및 안전의 포괄적 인 이점이 있습니다. 솔벤트 기반 유리 나노 투명 단열 코팅의 대안 제품으로 시장 전망이 넓고 국가에서 주장하는 에너지 절약 및 배출 감소에도 적합합니다. , 환경 보호에는 심오한 실용적인 중요성과 긍정적인 사회적 중요성 이 있습니다. 나노 투명 단열 코팅 의 단열 메커니즘 : 태양 복사 에너지는 주로 0.2~2.5μm의 파장 범위에 집중되어 있습니다. 특정 에너지 분포는 다음과 같습니다. 자외선 영역은 0.2~0.4μm이며 전체 에너지의 5%를 차지합니다. 가시광선 영역은 0.4~0....
    더 읽어보기
  • 28

    Jul

    세슘 텅스텐 청동 나노 입자로 스마트 단열의 시대가 도래했습니다.

    유리 단열 코팅은 하나 이상의 나노 분말 재료로 준비된 코팅의 일종입니다. 사용된 나노 물질은 특수한 광학적 특성을 가지고 있어 적외선 영역과 자외선 영역에서 차단율이 높다. , 가시 영역에서 높은 투과율을 가지고 있습니다. 소재의 투명하고 단열적인 특성을 이용하여 친환경 고성능 수지와 혼합하고 특수 가공기술을 통해 가공하여 에너지 절약형 친환경 단열 코팅제를 제조합니다. 유리 조명에 영향을 미치지 않는다는 전제하에 여름에는 에너지 절약 및 냉각 효과를 얻을 수 있으며 겨울에는 에너지 절약 및 보온 효과를 얻을 수 있습니다. 최근 몇 년 동안 새로운 환경 친화적인 단열재를 탐색하는 것은 항상 연구자들이 추구하는 목표였습니다. 이러한 재료는 가시광선 투과율이 높고 근적외선을 효과적으로 흡수하거나 반사할 수 있...
    더 읽어보기
  • 28

    Jul

    세슘 텅스텐 산화물 나노 입자 변성 PVC 필름의 단열 및 적외선 차단 특성을 제조하고 테스트하는 방법

    여름에는 태양이 강하고 햇빛이 유리를 통해 실내로 들어와 차 내부의 온도가 급격히 상승하여 생활 및 차량 탑승의 편안함에 심각한 영향을 미칩니다. 그 중 적외선 대역의 에너지가 가장 큰 비중을 차지하며, 태양광이 조사되는 장소의 온도 상승의 주요 에너지원이기도 합니다. 유리 필름 방식으로 적외선을 차단하고 높은 가시광선 투과율을 유지함으로써 실내 및 차량 온도의 급격한 상승을 방지하고 사람들에게 편안한 생활, 작업 및 승차 환경을 제공합니다. 세슘 텅스텐 산화물 나노 입자 는 운송 차량에 사용됩니다. 그리고 건물 에너지 절약은 좋은 응용 전망을 가지고 있습니다. 세슘 텅스텐 청동 나노 입자의 분산은 최종 제품의 성능에 직접적인 영향을 미칩니다. 저자는 볼밀로 세슘 텅스텐 청동 분말을 분산시키는 방법을 탐구하...
    더 읽어보기
  • 28

    Jul

    붕소 무수물 방법은 질화 붕소 합성에 일반적으로 사용되는 방법입니다.

    질화붕소 합성 무수붕소(B4O3)로 질화하는 것은 질화붕소의 산업적 생산을 위한 중요한 방법 중 하나입니다. 붕소 무수물의 낮은 융점으로 인해 (유리 상태는 294 ° C, 결정 상태는 450-600 ° C) 질화 온도에서 고점도 용융물이되어 암모니아의 흐름을 방해하고 반응을 느리게 만듭니다. 그리고 극도로 불완전하다. 이러한 단점을 극복하기 위해 고융점 물질을 충전제로 사용하여 무수붕소 용융물의 점도를 낮출 수 있습니다. 충전제 자체는 반응에 참여하지 않으며 마지막에 쉽게 제거할 수 있습니다. 일반적으로 사용되는 충전재로는 산화마그네슘(MgO), 탄산칼슘(CaCO3), 인산삼칼슘[Ca3(PO4)2], 질화붕소(BN) 등이 있습니다. 그 중 인산삼칼슘이 가장 좋으며, 붕산 무수물과 인산삼칼슘을 5:3의 질량...
    더 읽어보기
  • 28

    Jul

    붕사-염화암모늄법은 질화붕소 합성에 일반적으로 사용되는 방법입니다.

    이것은 질화붕소 를 합성하는 방법이다 암모니아 분위기에서 붕사와 염화암모늄을 주원료로 반응시켜 두 원료는 반응에 참여하기 전에 별도로 탈수 및 재결정화되어야 합니다. 붕사는 200~400°C의 진공 상태에서 가장 잘 탈수됩니다. 염화암모늄의 재결정화는 포화용액에 녹이고 여과하여 불순물을 제거한 후 재결정하는 것이다. 순도 요구 사항에 따라 여러 번 반복할 수 있습니다. 파쇄 및 건조된 붕사는 염화암모늄과 7:3의 질량비로 혼합되어 압축 연탄으로 제조되고 반응로에 보내져 합성된다. 반응 속도를 높이고 전환율을 향상시키기 위해서는 반응물이 스스로 형성하는 암모니아 분위기의 부족을 보충하기 위해 암모니아(NH3)를 도입해야 합니다. 저온에서, 암모니아의 공급량은 고온 단계에서보다 적습니다. 암모니아의 특정 공급량...
    더 읽어보기
  • 01

    Jul

    나노입자 투과 전자 현미경(TEM)을 위한 샘플 준비 방법

    투과전자현미경(TEM) 투과전자현미경은 시료를 투과하여 이미지를 생성하는 전자빔을 사용합니다. 이를 위해서는 관찰되는 시료가 입사 전자빔에 대해 "투명"해야 합니다. 투과 전자 현미경 은 재료 과학 및 생물학에서 널리 사용됩니다. 전자는 물체에 쉽게 산란되거나 흡수되기 때문에 투과율이 낮고 샘플의 밀도와 두께가 최종 이미지 품질에 영향을 미칩니다. 일반적으로 50-100nm의 더 얇은 초박형 섹션을 준비해야 합니다. 따라서 투과전자현미경으로 관찰하기 위한 시료는 매우 얇게 가공할 필요가 있다. 일반적으로 사용되는 방법은 초박형 절편, 냉동 초박형 절편, 동결 에칭, 동결 골절 등입니다. 분말 샘플의 경우 샘플은 초음파 분산으로 준비할 수 있습니다. 액체 샘플 또는 분산 샘플의 경우 구리 메쉬에 직접 떨어뜨릴...
    더 읽어보기
< 1 2 3 4 5 6 7 8 9 10 >
[  총  33  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!