-
TC4 티타늄 합금의 조성은 Ti-6AI-4V로 (a+β)형 티타늄 합금에 속합니다. 그것은 우수한 종합 기계적 특성, 높은 비강도, 우수한 내식성, 우수한 생체 적합성을 가지며 항공 우주, 석유 화학, 생물 의학 및 기타 분야에서 널리 사용됩니다. 이 기사에서는 티타늄 합금 분말을 제조하기 위해 플라즈마 회전 전극 방법을 선택하고 티타늄 합금 분말의 구형화 메커니즘에 대해 논의합니다. 미세 구조의 진화 법칙을 탐구하고 주요 열처리 방법을 논의하여 3D 프린팅 기술에 TC4 티타늄 합금을 적용하는 데 필요한 이론적 기초를 제공합니다. 2.1 실험 재료 및 방법: 플라즈마 회전 전극 원자화 방법으로 TC4 합금 분말을 제조하고, 그 화학적 조성을 아래와 같은 장비로 분석했습니다. 알 철 다섯 기음 N 시 영형...
더 읽어보기
-
탄화붕소 분말이란 무엇입니까? 나노 탄화붕소 및 초미세 탄화붕소 분말은 가변 전류 레이저 이온 기상 방법으로 제조되었습니다. 블랙 다이아몬드라고도 알려진 탄화붕소는 B4C의 분자식을 가지며 일반적으로 회색 검정색 미세 분말입니다. 이는 알려진 세 가지 가장 단단한 물질 중 하나입니다(나머지 두 개는 다이아몬드와 입방정 질화붕소). 단단한 검정색 광택 크리스탈. 경도는 공업용 다이아몬드보다 낮지만 탄화규소보다는 높습니다. 대부분의 도자기에 비해 취약성이 낮습니다. 열중성자 포획 단면적이 넓습니다. 강한 내화학성. 불화수소 및 질산에 의한 부식에 취약하지 않습니다. 용융된 알칼리에는 용해되지만 물과 산에는 용해되지 않습니다. 탄화붕소 분말의 응용은 무엇인가요 이 제품은 고순도, 작은 입자 크기, 균일한 분포, ...
더 읽어보기
-
더 읽어보기
-
이산화티타늄은 주로 판형 이산화티타늄, 아나타제형 이산화티타늄 , 금홍석형 이산화티타늄 의 세 가지 유형으로 나뉩니다. 금홍석 이산화티탄과 아나타제 이산화티탄은 현재 시장에서 가장 널리 사용되는 이산화티타늄의 두 가지 중요한 유형입니다. 그러나 그 속성은 크게 다릅니다. 화학적 성질의 차이 이산화티타늄은 화학적 성질이 매우 안정적이며 약산성 양쪽성 산화물입니다. 실온에서는 다른 원소 및 화합물과 거의 반응하지 않으며 산소, 암모니아, 질소, 황화수소, 이산화탄소 및 이산화황에 영향을 미치지 않습니다. 물, 지방, 묽은 산, 무기산, 염기에는 녹지 않으며 불화수소산에만 녹는다. 그러나 빛의 작용 하에서 이산화티타늄은 지속적인 산화-환원 반응을 겪을 수 있으며 광화학 활성을 가지고 있습니다. 이러한 광화학적 활...
더 읽어보기
-
니켈 기반 고온 합금 분말은 고온, 고압 및 부식성 환경을 견디도록 특별히 설계된 금속 재료의 일종이며 극한 조건에서 사용하기에 매우 적합합니다. 주로 니켈, 크롬, 철로 구성되어 있으며 성능을 높이기 위해 몰리브덴, 코발트, 니오븀, 티타늄, 알루미늄 등의 원소를 첨가하는 경우가 많습니다. 니켈 기반 고온 합금의 분류 및 공통 시리즈: 고용체 강화 니켈 기반 고온 합금: 특징: 고용체 강도 및 항산화 특성은 주로 크롬과 철을 첨가하여 향상됩니다. 예: Inconel 600 시리즈, 용광로 랙, 열처리 장비 등에 적합 석출 경화 니켈 기반 고온 합금: 특징: 이 유형의 합금은 감마 프라임과 같은 2차 상 석출을 통해 강도를 향상시키며 우수한 고온 특성을 갖습니다. -온도 강도. 예: 티타늄과 알루미늄을 함유...
더 읽어보기
-
1. 항균제 및 그 분류 항생제란 세균의 증식을 억제하고, 세균의 생활환경을 손상시키며, 효과적이고 지속적으로 그 효과를 발휘할 수 있는 약물을 말합니다. 항균제는 유기항균제와 무기항균제의 두 가지 범주로 나누어진다. 그 중 유기항균제로는 천연항균제와 합성항균제가 있으며, 무기항균제로는 주로 금속, 금속이온, 산화물 등이 있다. 일반적으로 언급되는 항균 조치에는 박테리아가 분비하는 독소의 억제, 사멸, 제거 및 예방이 포함됩니다. 무기항균제의 강력한 열안정성, 오래 지속되는 기능성, 안전성과 신뢰성에 최근 초미세 기술의 발달로 나노규모의 무기항균제를 대량생산하여 화학섬유에 혼합 또는 복합화할 수 있게 되었습니다. , 항균화학섬유의 산업화를 보장합니다. 2. 나노항균제 광촉매 특성은 나노반도체 소재의 중요한 ...
더 읽어보기
-
초미세 탄화규소 분말은 높은 화학적 불활성, 고경도, 고융점 등 우수한 특성을 지닌 우수한 무기재료로 제조업에서 널리 사용되고 있습니다. 그러나 표면 활성이 낮기 때문에 특정 산업 응용 시나리오에서는 우수한 성능을 달성하기가 어렵습니다. 따라서 초미립 탄화규소 분말의 표면 개질 방법에 대한 연구는 매우 중요하다. 이 기사에서는 초미세 탄화규소 분말의 두 가지 표면 개질 방법을 소개하고 개질된 분말을 테스트하고 특성화합니다. 첫째, 고분자 전해질을 통한 개질 방법이 소개된다. 이 방법은 양이온 고분자 전해질 폴리디메틸암모늄 클로라이드(PDADMAC) 또는 음이온 고분자 전해질 나트륨 폴리스티렌 설포네이트(PSS)를 사용하여 초미세 탄화규소 분말을 개질합니다. 구체적인 공정은 탈이온수에서 SiC 분말과 함께 P...
더 읽어보기
-
알루미나 분말 의 표면 개질 방법은 무엇입니까 ? 일반적인 재료인 산화알루미늄은 세라믹, 코팅, 촉매 등의 생산에 흔히 사용됩니다. 그러나 복합 재료 충전이나 고성능 촉매 제조와 같은 일부 응용 분야에서는 성능 향상을 위해 알루미나의 표면 개질이 필요합니다. 그리고 안정성. 이 기사에서는 알루미나의 표면 개질 방법에 대해 설명합니다. 표면 개질은 특정 물질(개질제)을 다른 물질(개질되는 물질)의 표면에 도입하여 재료의 특성과 기능을 향상시키는 과정입니다. 알루미나의 표면 개질 공정에는 화학적 처리, 증착 등의 방법이 일반적으로 사용되며, 그 중 실란 커플링제(KH-560)에 의한 알루미나의 개질이 가장 일반적이다. 실란 커플링제(KH-560)는 우수한 표면 친화성과 반응성을 지닌 다목적 유기 규소 화합물입니...
더 읽어보기
-
양자점 (QD)은 엑시톤의 보어 반경보다 작은 크기를 갖고 양자 구속 효과를 나타내는 반도체 나노입자를 말한다. 양자 구속 효과로 인해 양자점의 형광 방출은 직경 및 화학적 조성과 관련이 있습니다. 반도체 표면과 혼합함으로써 광학적, 광화학적 특성을 향상시킬 수 있습니다. 전통적인 양자점은 대부분 중금속 원소로 구성되어 있습니다. 이들의 뛰어난 성능은 생물학적 이미징, 전기화학, 에너지 변환 등의 분야에서 널리 활용되고 있지만, 중금속 원소는 환경 오염을 유발하고 유기체의 건강에 영향을 미칠 수 있습니다. 탄소 양자점(CQD)은 일반적으로 sp2/sp3 탄소 코어와 외부 산소/질소 작용기로 구성된 10nm 미만 크기의 단분산 구형 나노 탄소 소재를 의미합니다. 기존 반도체 양자점과 유사한 우수한 성능을 갖고...
더 읽어보기
-
그래핀 양자점(GQD)은 그래핀 층 크기가 100nm 미만이고 층 수가 10개 미만인 새로운 유형의 탄소 기반 형광 물질을 말합니다. 일반적으로 그래핀 양자점에는 많은 종류의 탄소 형광 물질과 그래핀 양자점, 산화 그래핀 양자점, 부분적으로 환원된 산화 그래핀 양자점을 포함하여 유사한 구조와 특성을 가진 파생물입니다. 그래핀 양자점의 특성 그래핀 양자점의 UV 흡수 성능 그래핀 양자점의 C=C 이중 결합 구조로 인해 π - π 전이가 발생하여 짧은 파장 범위에서 많은 수의 광자를 흡수할 수 있습니다. 일반적으로 UV 흡수 스펙트럼의 260~320nm 범위에서 강한 흡수 피크가 나타나고 가시광선 범위까지 확장되는 테일링이 동반됩니다. 한편, n - π 전이 의 영향으로 인해 그래핀 양자점은 270~390n...
더 읽어보기