-
나노입자는 왜 응집되는가? 1. 표면 자유 에너지 구동 메커니즘 나노입자는 더 큰 비표면적과 불포화 표면 원자를 가지므로 표면 자유 에너지가 증가합니다. 다중 입자 접촉은 전체 표면적을 감소시키고, 계면 에너지를 방출하여 시스템의 자유 에너지를 낮출 수 있습니다. 이러한 에너지 최소화 경향은 입자의 자발적 응집을 뒷받침하는 고유한 열역학적 원동력이며, 나노스케일에서 응집의 일반적인 원인입니다. 2. 정전기와 전기이중층 불안정성 하전된 입자에 의해 형성된 전기 이중층은 정전기적 반발력에 의한 안정적인 분산 상태를 제공할 수 있습니다. pH가 등전점에 접근하거나 이온 강도가 증가하면 이중층이 압축되고 반발력이 감소하며, 입자 간의 인력이 우세해져 응집이 발생합니다. 이러한 전위 장벽의 안정성은 시스템의 응집 방...
더 읽어보기
-
나노입자란 무엇인가? 나노입자(NP)는 일반적으로 3차원 공간에서 나노스케일(1~100nm)에서 최소 한 차원을 갖는 입상 물질로 정의됩니다. 나노입자는 구조 및 형태학적 차원에 따라 1차원(1D) 및 2차원(2D) 나노물질에 해당하는 0차원 나노물질(0D 나노물질)로 분류할 수 있습니다. 0D 나노입자는 3차원 공간에서 크기 제약을 받으며, 대표적인 예로는 금속 나노입자, 산화물 나노입자, 황화물 나노결정 등이 있습니다. 또한, 나노입자는 조성에 따라 단일 성분 구조(순수 금속, 단일 산화물 등)와 다성분 구조(코어-쉘 구조, 합금 나노입자, 이종 구조 등)로 더 세분화될 수 있으며, 구조적 복잡성은 기능적 성능에 직접적인 영향을 미칩니다. 나노입자 응집 및 분산이란 무엇인가? 나노입자 응집: 1차 나노입...
더 읽어보기
-
전자 및 신에너지 산업 등 여러 산업의 눈부신 발전 이면에는 겉보기에는 사소해 보이지만 필수적인 물질, 바로 전도성 은 페이스트가 있습니다. 키보드, 휴대폰, 태블릿, 태양광 패널, 스마트 카드, RFID 등 다양한 기기는 전도성 은 페이스트를 사용하여 연결하고 완벽하게 작동합니다. 은은 금속 중 가장 높은 전도성을 가지고 있으며, 뛰어난 전도성, 열전도성, 우수한 화학적 안정성, 그리고 용접성을 갖추고 있어 현대 전자 산업의 다양한 분야에 널리 사용됩니다. OLED 플렉서블 스크린이든 LCD 스크린이든, 스크린 내부에는 "전도성 은 페이스트"로 인쇄된 수많은 얇은 전도성 선들이 존재합니다. 1. 구성 전도성 은 페이스트 전도성 은 페이스트 일반적으로 마이크로미터 크기의 금속 은 입자, 폴리머 바인더, 용매...
더 읽어보기
-
재료 가공 및 화학 생산 분야에서 커플링제, 가교제, 분산제는 각기 다른 기능을 가진 세 가지 일반적인 첨가제이지만, 모두 재료 특성에 중요한 영향을 미칩니다. 아래에서는 정의, 주요 특징, 일반적인 유형, 그리고 핵심 차이점을 중심으로 자세히 설명합니다. 커플링제 커플링제는 서로 다른 특성을 가진 두 재료 사이의 계면에서 무기계와 유기계를 연결하는 "외교관"처럼 "다리" 역할을 하는 일종의 화학 물질입니다. 커플링제의 핵심 기능은 무기계와 유기계 재료 사이의 계면 결합을 개선하여 복합 재료의 전반적인 성능을 향상시키는 것입니다. 모구조: 분자는 일반적으로 두 개의 서로 다른 작용기를 포함하고 있으며, 한쪽 끝은 친수성 무기기(예: 실리콘 산소 결합, 티타늄 산소 결합 등)로, 무기 재료(예: 유리, 세라믹...
더 읽어보기
-
실리콘 파우더 (마이크론 및 나노미터 규모 포함) 높은 화학적 활성, 넓은 비표면적, 그리고 반도체 특성으로 인해 다양한 분야에서 광범위하게 활용됩니다. 예를 들면 다음과 같습니다. 1. 전자 및 반도체 산업 집적회로 및 칩:고순도 실리콘 분말(99.999% 이상)은 단결정 실리콘과 다결정 실리콘을 제조하는 원료로, 반도체 소자, CPU, GPU 및 기타 칩에 사용됩니다. 태양광 산업: 태양 전지의 실리콘 웨이퍼는 실리콘 분말(CVD법으로 성장시킨 실리콘 잉곳을 슬라이스하는 것과 같은)로부터 가공됩니다. 전자 포장재:나노 실리콘 분말은 전도성 접착제 및 열 충진재로 사용되어 전자 부품의 방열 및 전도성을 향상시킵니다. 2. 새로운 에너지와 배터리 리튬이온전지 음극재료:나노실리콘 분말은 기존 흑연 음극을 대체...
더 읽어보기
-
속성 이산화통:이산화 바이나듐의 분자식은이다 VO2, 분자량은 82 94입니다 단일 클리닉 결정 구조를 가진 진한 청색 결정 분말입니다 물에 불용성, 산과 알칼리에 쉽게 용해됩니다 산에 용해 될 때, 그것은 사막 이온을 생성 할 수 없지만 양성의 이온 산화 바나듐 이온을 생성한다 건조한 수소 흐름에서 적색 열로 가열되면 트라이 옥스 바나듐으로 감소되며 공기 또는 질산에 의해 산화되어 바나듐에 바르 나나 디에 용해되어 바나 데이트를 형성 할 수 있습니다 그것은 탄소, 일산화탄소 또는 옥살산으로 바나듐 펜 독 사이드를 감소시킴으로써 생산 될 수있다 유리 및 도자기의 채색 제로 사용됩니다 이산화 바이나듐은 위상 전이 특성을 갖는 금속 산화물이며, 위상 전이 온도는 68 ● 위상 전이 전후의 구조적 변화는 전송에서...
더 읽어보기
-
TC4 티타늄 합금의 조성은 Ti-6AI-4V로 (a+β)형 티타늄 합금에 속합니다. 그것은 우수한 종합 기계적 특성, 높은 비강도, 우수한 내식성, 우수한 생체 적합성을 가지며 항공 우주, 석유 화학, 생물 의학 및 기타 분야에서 널리 사용됩니다. 이 기사에서는 티타늄 합금 분말을 제조하기 위해 플라즈마 회전 전극 방법을 선택하고 티타늄 합금 분말의 구형화 메커니즘에 대해 논의합니다. 미세 구조의 진화 법칙을 탐구하고 주요 열처리 방법을 논의하여 3D 프린팅 기술에 TC4 티타늄 합금을 적용하는 데 필요한 이론적 기초를 제공합니다. 2.1 실험 재료 및 방법: 플라즈마 회전 전극 원자화 방법으로 TC4 합금 분말을 제조하고, 그 화학적 조성을 아래와 같은 장비로 분석했습니다. 알 철 다섯 기음 N 시 영형...
더 읽어보기
-
탄화붕소 분말이란 무엇입니까? 나노 탄화붕소 및 초미세 탄화붕소 분말은 가변 전류 레이저 이온 기상 방법으로 제조되었습니다. 블랙 다이아몬드라고도 알려진 탄화붕소는 B4C의 분자식을 가지며 일반적으로 회색 검정색 미세 분말입니다. 이는 알려진 세 가지 가장 단단한 물질 중 하나입니다(나머지 두 개는 다이아몬드와 입방정 질화붕소). 단단한 검정색 광택 크리스탈. 경도는 공업용 다이아몬드보다 낮지만 탄화규소보다는 높습니다. 대부분의 도자기에 비해 취약성이 낮습니다. 열중성자 포획 단면적이 넓습니다. 강한 내화학성. 불화수소 및 질산에 의한 부식에 취약하지 않습니다. 용융된 알칼리에는 용해되지만 물과 산에는 용해되지 않습니다. 탄화붕소 분말의 응용은 무엇인가요 이 제품은 고순도, 작은 입자 크기, 균일한 분포, ...
더 읽어보기
-
더 읽어보기
-
이산화티타늄은 주로 판형 이산화티타늄, 아나타제형 이산화티타늄 , 금홍석형 이산화티타늄 의 세 가지 유형으로 나뉩니다. 금홍석 이산화티탄과 아나타제 이산화티탄은 현재 시장에서 가장 널리 사용되는 이산화티타늄의 두 가지 중요한 유형입니다. 그러나 그 속성은 크게 다릅니다. 화학적 성질의 차이 이산화티타늄은 화학적 성질이 매우 안정적이며 약산성 양쪽성 산화물입니다. 실온에서는 다른 원소 및 화합물과 거의 반응하지 않으며 산소, 암모니아, 질소, 황화수소, 이산화탄소 및 이산화황에 영향을 미치지 않습니다. 물, 지방, 묽은 산, 무기산, 염기에는 녹지 않으며 불화수소산에만 녹는다. 그러나 빛의 작용 하에서 이산화티타늄은 지속적인 산화-환원 반응을 겪을 수 있으며 광화학 활성을 가지고 있습니다. 이러한 광화학적 활...
더 읽어보기