13929258449

admin@satnano.com

검색

검색

  • 19

    Sep

    입자 크기 분석기의 측정 편차는 여러 요인의 영향을 받습니다.

    입자 크기 분석기의 측정 편차는 다양한 요인의 영향을 받으며 다음은 몇 가지 가능한 요인입니다. 샘플의 물리적 특성: 샘플의 모양, 크기, 밀도 및 색상은 모두 입자 크기 분석기의 측정 편차에 영향을 미칠 수 있습니다. 측정 환경: 온도, 습도, 압력 등의 환경 요인을 측정하면 측정 편향이 발생할 수 있습니다. 측정 장비: 광원, 검출기, 필터 등 입자 크기 분석기의 기술 및 성능도 측정 편향을 유발하는 중요한 요소입니다. 운영자의 기술 수준: 운영자의 기술 수준과 경험도 측정 편향을 유발할 수 있습니다. 샘플 준비 방법: 샘플 준비 방법은 측정 편향에도 영향을 미칩니다. 샘플 준비가 부적절하거나 측정 장비 기술과 일치하지 않으면 측정 편향이 발생할 수 있습니다....
    더 읽어보기
  • 13

    Oct

    투명 망토에 어떤 나노물질을 사용할 수 있나요?

    비가시성 물질이란 물체 표면에 빛이 반사되는 것을 줄이거나 없애서 물체를 눈에 보이지 않게 하거나 가시성을 감소시킬 수 있는 물질을 말합니다. 현재 일반적으로 사용되는 스텔스 재료의 원리는 다음과 같습니다. 굴절률 제어 원리: 재료의 굴절률과 주변 매질의 굴절률 차이를 활용하여 재료를 통과하는 빛의 반사 각도가 변경되어 물체를 숨기는 효과를 얻습니다. 흡수 원리 : 특정 파장의 빛을 흡수하는 특정 물질의 특성을 이용하여 물체 표면의 빛을 완전히 흡수하여 표면이 검게 보이거나 주변 환경의 색상과 유사하게 나타나 빛으로 인한 밝기를 피합니다. 반사 및 스텔스 효과의 어느 정도 달성. 메타물질 원리: 메타물질의 물리적 특성을 활용하여 특정 파장에서 음의 굴절률을 나타내거나 전자파에 대해 -1의 투과율을 나타내어 ...
    더 읽어보기
  • 20

    Oct

    나노입자 코팅의 두께를 측정하는 방법

    나노입자의 코팅층 두께를 측정하려면 고급 장비와 기술을 사용해야 합니다. 가능한 측정 방법은 다음과 같습니다. 투과전자현미경(TEM): 고밀도 전자빔을 활용하여 나노입자의 구조와 특성을 관찰하고 측정하는 현미경입니다. 코팅층의 두께 측정을 위해 TEM은 입자의 단면 이미지를 관찰하여 코팅층의 두께를 결정할 수 있습니다. 주사전자현미경(SEM): 이 현미경은 나노입자의 구조와 특성도 관찰하고 측정할 수 있습니다. TEM과 달리 SEM은 투과된 전자빔 대신 전자빔을 사용합니다. SEM을 이용하면 샘플의 단면 이미지를 준비하여 코팅층의 두께를 확인할 수 있습니다. XPS(X선 광전자 분광법): XPS는 표면의 화학적 분석을 수행할 수 있습니다. 입자 표면의 X선 스펙트럼을 분석하면 코팅층의 조성과 두께를 알 수 ...
    더 읽어보기
  • 07

    Dec

    초미세 나노분말의 입도 측정 방법은 무엇입니까?

    초미세 나노분말은 현대 과학기술 발전의 중요한 산물로서 전자제품, 생물의학 등 분야에서 널리 활용되고 있습니다. 초미세 나노분말의 입도는 그 성능에 중요한 영향을 미치기 때문에 초미세 나노분말의 입도 검출 기술 개발도 화제가 되고 있다. 사이테는 초미세 나노분말 연구 및 생산 전문 기업으로 초미세 나노분말의 입도 검출 분야에서도 풍부한 경험과 기술 축적을 보유하고 있습니다. 1, 일반적인 검출 방법: 초미세 나노분말의 입자 크기에 대한 일반적인 검출 방법은 동적 광산란(DLS)과 레이저 회절 입자 크기 분석(LPS)입니다. 그 중 DLS 검출의 원리는 산란광 강도의 변화를 이용해 시료의 입자 크기를 반영하는 것이며 검출 범위는 1nm~1μm입니다. 콜로이드 액체 입자 검출에 적합합니다. LPS는 0.04~2...
    더 읽어보기
  • 22

    Dec

    의류, 식품, 운송에 나노소재를 적용하는 방법

    의류, 식품, 주거, ​​교통수단에 나노소재를 적용하는 방법 나노기술은 기술 산업에서 항상 높은 기대를 받는 분야였으며, 나노재료는 나노기술의 중요한 구성 요소입니다. 의류, 식품, 주택, 운송 분야에서 나노물질의 적용은 지속적으로 확대되고 있으며, 특히 생산 효율성과 삶의 질 향상에 더욱 그렇습니다. 의류: 의류 산업에 나노물질의 응용 나노물질은 다양한 섬유로 만들어 의류에 응용할 수 있고 다양한 역할을 할 수 있습니다. 그중 하나의 일반적인 응용 분야는 은나노 섬유입니다. 이 은섬유는 항균, 탈취 효과를 발휘하여 착용자를 깨끗하고 건강하게 유지시켜 줍니다. 나노 금속 산화물은 또한 일반적으로 사용되는 나노 소재로 의류의 방수, 방진 및 자외선 차단 기능을 할 수 있습니다. 잘 알려진 바와 같이, 인간의 ...
    더 읽어보기
  • 29

    Dec

    열전도성 나노물질 첨가량은 얼마나 되나요?

    기술이 지속적으로 발전함에 따라 현대 산업에서 열전도성 나노재료 의 적용이 점점 더 광범위해지고 있습니다. 전자 장치에서 자동차 산업에 이르기까지 이들의 사용은 오늘날 첨단 기술 분야의 산업 표준이 되었습니다. 열전도성 나노재료 생산 전문 회사인 Dongguan SAT NANO는 산업 제조에서 열전도성 나노재료의 중요성과 역할을 이해하고 있습니다. 그리고 중요한 질문은 열전도성 나노물질을 얼마나 첨가하는가입니다. 첫째, 열전도성 나노소재의 특성을 이해해야 한다. 열전도성 나노물질은 입자 크기가 작기 때문에 열 에너지를 효율적으로 전달할 수 있습니다. 기존의 열 전도성 소재와 비교하여 상대적으로 적은 양의 첨가로 더 나은 열 전도성을 제공할 수 있습니다. 따라서 열전도성 나노물질의 첨가량은 일반적으로 매우 적...
    더 읽어보기
  • 05

    Jan

    금속나노입자 보호층의 역할은 무엇인가

    금속나노입자는 의학, 전자, 에너지, 환경 등 다양한 분야에 응용이 가능한 널리 사용되는 소재이다. 크기가 매우 작고 표면적이 넓어 많은 재료의 성능을 향상시킬 수 있습니다. 그러나 금속 나노입자의 표면은 매우 활동적이고 주변 환경과 쉽게 반응하는 경우가 많으므로 표면을 보호하기 위한 보호층이 필요합니다. 이 기사에서는 금속 나노입자의 보호층의 역할을 탐구합니다. 보호층은 일반적으로 무기 또는 유기 물질로 구성된 금속 나노입자의 표면을 덮는 얇은 막이다. 이 박막은 금속 나노입자의 표면을 보호하고 주변 환경과 반응하는 것을 방지할 수 있습니다. 특히 촉매반응에서는 금속나노입자의 표면이 반응물과 반응하는 경우가 많으며, 보호층은 이러한 반응이 일어나는 것을 방지하여 반응의 선택성과 효율성을 향상시킬 수 있다....
    더 읽어보기
  • 09

    Jan

    자기 윤활 소재로 사용할 수 있는 나노 소재

    기계 장비의 성능과 수명에 대한 요구가 증가함에 따라 산업 분야에서 자기 윤활 재료의 적용이 점점 더 광범위해지고 있습니다. 나노물질은 우수한 물리적 특성으로 인해 자기윤활 물질 제조에 중요한 역할을 합니다. 그렇다면 자기윤활성 물질 제조에 어떤 나노물질을 사용할 수 있을까? 그래핀은 탄소 원자로 구성된 2차원 물질로, 현재 자기윤활성 물질 연구에서 뜨거운 주제 중 하나이다. 높은 열전도율과 화학적 안정성을 갖고 있어 금속 표면에 효과적으로 윤활 효과를 줄 수 있습니다. 또한, 그래핀은 마모 및 마찰 측면에서도 우수한 성능을 나타냅니다. 그래핀 외에도 나노 구리 분말 도 일반적으로 사용되는 자기 윤활 소재입니다. 구리분말이 표면에 마모되면 산화막이 형성되며, 이것이 파열되고 재생되어 윤활 효과를 얻습니다. ...
    더 읽어보기
  • 19

    Jan

    어떤 나노물질이 다른 결정 형태를 가지고 있는지

    최근 나노물질의 응용이 주목을 받고 있다. 나노물질은 더 큰 비표면적과 서브마이크론 크기를 갖고 있어 거시적 물질과 다른 화학적, 물리적 특성을 제공합니다. 나노물질의 결정 구조는 그 특성에 중요한 영향을 미칩니다. 다양한 결정 형태를 지닌 나노물질은 각각의 응용 분야에서 특정한 장점을 가지고 있습니다. Dongguan SAT NANO는 수년간의 기술 연구 및 시장 경험을 바탕으로 나노 소재를 제공하는 전문 회사입니다. 우리는 고객의 혁신적인 요구 사항을 충족할 수 있도록 고품질 나노 소재와 다양한 결정 형태를 제공합니다. 다음으로, 몇 가지 일반적인 나노물질과 그들의 다양한 결정 형태를 살펴보겠습니다. 1. 이산화티타늄 나노소재 이산화티타늄은 태양전지, 촉매, 자가세정코팅 등의 분야에 활용될 수 있는 널리...
    더 읽어보기
  • 26

    Jan

    나노물질 준비를 위한 건식 및 습식 기술 이해

    소개: 나노기술은 의학에서 전자공학에 이르기까지 다양한 분야에서 점점 더 중요해지고 있습니다. 나노입자, 나노튜브 , 나노와이어를 포함한 나노재료 는 많은 나노기술 응용 분야의 필수 구성 요소입니다. 이러한 재료를 생산하려면 습식 및 건식 방법과 같은 특수 기술이 필요합니다. 이 기사에서는 건식 및 습식 방법이 무엇인지, 그 이점과 SAT NANO가 고품질 나노재료를 제공하는 방법을 살펴보겠습니다 . 건식 및 습식 방법은 나노물질을 제조하는 가장 일반적인 기술 중 두 가지입니다. 건식법은 용매를 사용하지 않고 나노물질을 생산하는 기술이고, 습식법은 액체 매질을 활용하는 기술이다. 건식 방법은 습식 방법에 비해 몇 가지 장점이 있습니다. 예를 들어, 건식 방법은 용매를 사용할 필요가 없기 때문에 더 간단하고 ...
    더 읽어보기
  • 31

    Jan

    자외선을 차단하기 위해 인쇄 잉크 및 코팅에 어떤 나노 분말을 첨가할 수 있습니까?

    나노 분말은 현대 산업에서 다양한 응용 분야를 가지고 있습니다. 그 중 하나는 UV 저항성을 제공하기 위해 인쇄 잉크 및 코팅에 추가됩니다. 나노분말은 크기가 매우 작고 비표면적이 높기 때문에 극소량으로도 놀라운 효과를 나타낼 수 있습니다. 그렇다면 UV 저항 역할을 하기 위해 인쇄 잉크와 코팅에 어떤 나노 분말을 첨가할 수 있을까요? 이 기사에서는 간단한 소개를 제공합니다. 1, 나노 이산화티타늄 분말 나노 이산화티타늄 분말은 일종의 일반적인 나노 분말로, 자외선에 저항하기 위해 잉크와 코팅에 첨가할 수 있습니다. 내구성과 색상을 향상시키기 위해 실내외 건축자재, 플라스틱, 유색자재 등 다양한 분야에 널리 사용되고 있습니다. 인쇄 잉크 및 코팅에 나노 이산화티타늄 분말을 첨가하면 UV 손상을 방지할 수 있...
    더 읽어보기
  • 22

    Feb

    클래스 I 및 클래스 II 재료를 구별하는 방법

    클래스 I 및 클래스 II 재료는 재료 과학 분야의 두 가지 기본 개념으로, 재료의 결정 구조 유형을 설명하는 데 사용되며 반도체 및 금속과 같은 재료 연구에 자주 적용됩니다. 그렇다면 Class I 재료와 Class II 재료를 어떻게 구별합니까? 간단한 방법은 재료의 밀도에 따라 구별하는 것입니다. 유형 2 물질과 비교하여 유형 1 물질은 원자 배열이 더 촘촘하고 구조가 더 촘촘하기 때문에 밀도가 더 높습니다. 물론 이 방법은 동일한 화학 원소를 가진 재료를 비교하는 데에만 적합하며 원소 조성이 다른 재료에는 적용할 수 없습니다. 또 다른 방법은 X선 회절(XRD) 분석을 이용하는 것입니다. XRD는 재료 결정의 회절 패턴을 사용하여 결정 구조 유형을 결정할 수 있는 일반적인 재료 특성화 도구입니다. 실...
    더 읽어보기
< 11 12 13 14 15 16 >
[  총  16  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!