13929258449

admin@satnano.com

검색

검색

  • 08

    Sep

    나노분말의 SEM을 준비하는 방법

    SEM 나노 분말 샘플을 준비하려면 일반적으로 다음 단계가 필요합니다. 샘플 준비 첫째, 적절한 시료 준비 방법을 선택하는 것이 필요합니다. 일반적으로 물리적 방법, 화학적 방법, 생물학적 방법, 기계적 방법 등이 있으며 그 중 가장 일반적인 방법으로는 마그네트론 스퍼터링, 화학적 환원, 에어로졸 등이 있습니다. 시료 분산 나노분말 시료를 고르게 분산시키는 것도 매우 중요합니다. 초음파나 교반 등의 방법을 사용하여 시료를 용매나 기타 물질에 균일하게 분산시킬 수 있습니다. 샘플 준비 실제 필요에 따라 샘플을 얇은 필름, 얇은 필름 또는 기타 형태로 준비할 수 있습니다. 샘플은 일반적으로 원심분리기와 같은 장비를 사용하여 준비할 수 있습니다. 입자 크기 테스트 입자 크기는 투과전자현미경이나 X선 회절과 같은 ...
    더 읽어보기
  • 18

    Sep

    운송 중 분말의 유동성을 향상시키는 방법

    운송 중 분말의 유동성을 개선하는 방법에는 여러 가지가 있습니다. 분말의 입자 모양은 분쇄 또는 분무 건조 공정 중 작동 조건을 변경하여 유동성에 영향을 줌으로써 제어할 수 있습니다. 분말에 실리카 , 알루미나 등의 입상물질 등 유동성 첨가제를 첨가하여 유동성을 향상시킬 수 있습니다. 흐름이 어려운 분말의 경우, 이송 파이프라인, 버킷 피더, 진동 피더에 진동 장치를 추가하거나 특정 온도를 유지하기 위해 히터를 사용하는 등 진동, 가열 또는 공기 흐름을 사용하여 흐름을 촉진할 수 있습니다. 분체를 운반하는 과정에서 겹겹이 쌓이면 분체의 유동성에 영향을 줄 수 있으므로 피해야 합니다. 경사면을 설치하거나 운송 파이프라인을 늘리는 등의 방법으로 쌓이는 것을 방지할 수 있습니다....
    더 읽어보기
  • 27

    Oct

    초미립자 표면 코팅 처리 방법은 무엇입니까?

    초미세분말 의 표면코팅처리는 분체의 흐름성을 향상시키고 분진비산을 감소시키며 안정성과 내습성을 향상시키며 분체의 용해성을 향상시킬 수 있는 매우 유용한 기술입니다. 일반적으로 사용되는 초미립자 표면 코팅 처리 방법은 다음과 같습니다. 습식 표면처리 : 분말에 코팅물질을 액상으로 첨가하고 건조시켜 얇은 막을 형성하는 방식입니다. 코팅제로는 폴리머, 전분, 폴리아크릴산, 스테아르산 등을 사용할 수 있습니다. 건식표면처리 : 기계식 건조기에서 분체와 도료를 별도로 혼합한 후, 공기의 흐름을 통해 도료가 분체의 표면에 부착되어 얇은 막을 형성하게 됩니다. 코팅제는 규산, 실리카, 탄산칼슘, 활석분말 등이 될 수 있다. 이온교환 : 계면활성제나 이온교환수지 등의 물질을 이용하여 이온밀도가 높은 액체를 고체로 제조하고...
    더 읽어보기
  • 10

    Nov

    실리콘 카바이드 입자 강화 알루미늄 매트릭스 복합 재료의 응용

    SiCp/Al 복합재료로 약칭되는 탄화규소 입자 강화 알루미늄 매트릭스 복합재료는 알루미늄 매트릭스 합금에 탄화규소 입자(SiCp)를 첨가하여 고강도, 고강성 및 고내열성을 갖는 복합재료를 형성하는 것을 의미합니다. 이 복합재료는 내식성, 내마모성이 우수하여 항공우주, 조선, 자동차, 전자기기 등의 분야에서 널리 사용되고 있습니다. 또한 탄화규소 입자를 추가하면 알루미늄 기반 재료의 열전도도가 향상되어 고온 조건에서 응용 분야를 견딜 수 있습니다. 탄화규소 입자 강화 알루미늄 매트릭스 복합재는 고강도, 고강성, 고내열성, 고내식성과 같은 장점을 가지며 항공우주, 자동차 제조, 군사 및 기타 분야에서 일반적으로 사용됩니다. 항공우주 분야에서 탄화규소 입자 강화 알루미늄 매트릭스 복합재는 항공기의 성능, 수명 ...
    더 읽어보기
  • 24

    Nov

    초미립자 표면 코팅 처리 방법은 무엇입니까?

    초미세 분말은 많은 산업 생산 공정에서 필수적인 원료 중 하나입니다. 기존의 일반 분말에 비해 입자 크기가 더 작고, 표면이 매끄러우며, 가공이 쉽고, 분산이 더 쉬운 장점이 있습니다. 초미립자 분말을 보다 잘 활용하기 위해서는 품질과 성능을 향상시키는 표면 코팅 처리가 필요합니다. 이 기사에서는 초미세 분말의 표면 코팅 처리를 위한 여러 가지 방법을 소개합니다. 방법 1: 물리적 표면 코팅 처리 물리적 방법을 이용한 표면코팅 처리에 일반적으로 사용되는 방법으로는 기계적 합금화, 고에너지 볼밀링, 기상증착, 화학기상증착, 물리증착 등이 있다. 이들 방법 중 특히 물리적 증착법은 가장 일반적으로 사용되는 표면 코팅 처리 방법 중 하나이다. 물리적 증착 방법은 표면에 미크론 및 서브미크론 수준의 결정질 또는 비...
    더 읽어보기
  • 07

    Dec

    초미세 나노분말의 입도 측정 방법은 무엇입니까?

    초미세 나노분말은 현대 과학기술 발전의 중요한 산물로서 전자제품, 생물의학 등 분야에서 널리 활용되고 있습니다. 초미세 나노분말의 입도는 그 성능에 중요한 영향을 미치기 때문에 초미세 나노분말의 입도 검출 기술 개발도 화제가 되고 있다. 사이테는 초미세 나노분말 연구 및 생산 전문 기업으로 초미세 나노분말의 입도 검출 분야에서도 풍부한 경험과 기술 축적을 보유하고 있습니다. 1, 일반적인 검출 방법: 초미세 나노분말의 입자 크기에 대한 일반적인 검출 방법은 동적 광산란(DLS)과 레이저 회절 입자 크기 분석(LPS)입니다. 그 중 DLS 검출의 원리는 산란광 강도의 변화를 이용해 시료의 입자 크기를 반영하는 것이며 검출 범위는 1nm~1μm입니다. 콜로이드 액체 입자 검출에 적합합니다. LPS는 0.04~2...
    더 읽어보기
  • 29

    Dec

    열전도성 나노물질 첨가량은 얼마나 되나요?

    기술이 지속적으로 발전함에 따라 현대 산업에서 열전도성 나노재료 의 적용이 점점 더 광범위해지고 있습니다. 전자 장치에서 자동차 산업에 이르기까지 이들의 사용은 오늘날 첨단 기술 분야의 산업 표준이 되었습니다. 열전도성 나노재료 생산 전문 회사인 Dongguan SAT NANO는 산업 제조에서 열전도성 나노재료의 중요성과 역할을 이해하고 있습니다. 그리고 중요한 질문은 열전도성 나노물질을 얼마나 첨가하는가입니다. 첫째, 열전도성 나노소재의 특성을 이해해야 한다. 열전도성 나노물질은 입자 크기가 작기 때문에 열 에너지를 효율적으로 전달할 수 있습니다. 기존의 열 전도성 소재와 비교하여 상대적으로 적은 양의 첨가로 더 나은 열 전도성을 제공할 수 있습니다. 따라서 열전도성 나노물질의 첨가량은 일반적으로 매우 적...
    더 읽어보기
  • 09

    Jan

    자기 윤활 소재로 사용할 수 있는 나노 소재

    기계 장비의 성능과 수명에 대한 요구가 증가함에 따라 산업 분야에서 자기 윤활 재료의 적용이 점점 더 광범위해지고 있습니다. 나노물질은 우수한 물리적 특성으로 인해 자기윤활 물질 제조에 중요한 역할을 합니다. 그렇다면 자기윤활성 물질 제조에 어떤 나노물질을 사용할 수 있을까? 그래핀은 탄소 원자로 구성된 2차원 물질로, 현재 자기윤활성 물질 연구에서 뜨거운 주제 중 하나이다. 높은 열전도율과 화학적 안정성을 갖고 있어 금속 표면에 효과적으로 윤활 효과를 줄 수 있습니다. 또한, 그래핀은 마모 및 마찰 측면에서도 우수한 성능을 나타냅니다. 그래핀 외에도 나노 구리 분말 도 일반적으로 사용되는 자기 윤활 소재입니다. 구리분말이 표면에 마모되면 산화막이 형성되며, 이것이 파열되고 재생되어 윤활 효과를 얻습니다. ...
    더 읽어보기
  • 31

    Jan

    자외선을 차단하기 위해 인쇄 잉크 및 코팅에 어떤 나노 분말을 첨가할 수 있습니까?

    나노 분말은 현대 산업에서 다양한 응용 분야를 가지고 있습니다. 그 중 하나는 UV 저항성을 제공하기 위해 인쇄 잉크 및 코팅에 추가됩니다. 나노분말은 크기가 매우 작고 비표면적이 높기 때문에 극소량으로도 놀라운 효과를 나타낼 수 있습니다. 그렇다면 UV 저항 역할을 하기 위해 인쇄 잉크와 코팅에 어떤 나노 분말을 첨가할 수 있을까요? 이 기사에서는 간단한 소개를 제공합니다. 1, 나노 이산화티타늄 분말 나노 이산화티타늄 분말은 일종의 일반적인 나노 분말로, 자외선에 저항하기 위해 잉크와 코팅에 첨가할 수 있습니다. 내구성과 색상을 향상시키기 위해 실내외 건축자재, 플라스틱, 유색자재 등 다양한 분야에 널리 사용되고 있습니다. 인쇄 잉크 및 코팅에 나노 이산화티타늄 분말을 첨가하면 UV 손상을 방지할 수 있...
    더 읽어보기
  • 22

    Feb

    클래스 I 및 클래스 II 재료를 구별하는 방법

    클래스 I 및 클래스 II 재료는 재료 과학 분야의 두 가지 기본 개념으로, 재료의 결정 구조 유형을 설명하는 데 사용되며 반도체 및 금속과 같은 재료 연구에 자주 적용됩니다. 그렇다면 Class I 재료와 Class II 재료를 어떻게 구별합니까? 간단한 방법은 재료의 밀도에 따라 구별하는 것입니다. 유형 2 물질과 비교하여 유형 1 물질은 원자 배열이 더 촘촘하고 구조가 더 촘촘하기 때문에 밀도가 더 높습니다. 물론 이 방법은 동일한 화학 원소를 가진 재료를 비교하는 데에만 적합하며 원소 조성이 다른 재료에는 적용할 수 없습니다. 또 다른 방법은 X선 회절(XRD) 분석을 이용하는 것입니다. XRD는 재료 결정의 회절 패턴을 사용하여 결정 구조 유형을 결정할 수 있는 일반적인 재료 특성화 도구입니다. 실...
    더 읽어보기
  • 05

    Mar

    솔루션에서 PPM, PPB, PPT의 상관관계는 무엇입니까?

    나노기술의 지속적인 발전과 함께 나노분말 분산은 중요한 나노소재로서 더욱 주목을 받고 있습니다. SAT NANO는 나노소재 생산 전문기업으로 고품질의 나노분말 분산액을 제공하고 있습니다. 이번 글에서는 솔루션 내 PPM, PPB, PPT의 변환과 각각의 의미를 소개하겠습니다. PPM은 "Parts Per Million"의 약자로 용액 내 물질의 농도를 나타내는 단위 중 하나입니다. 일반적으로 용액의 전체 중량에 대한 용해된 물질의 중량 비율을 100만분의 1로 나타냅니다. 예를 들어, 용액에 총 중량이 1000000g인 물질 A 10g이 포함되어 있는 경우 물질 A의 농도는 10PPM입니다. PPM과 마찬가지로 PPB도 10억 개의 부품에 포함된 물질의 질량을 나타내는 측정 단위입니다. 일반적으로 대기 오염...
    더 읽어보기
  • 22

    Mar

    유전체 재료로 사용되는 나노 재료

    유전체 재료는 전하를 저장할 수 있는 전기 절연 재료입니다. 유전 상수는 유전 물질의 중요한 성능 지표로, 전기장에서 전하 저장 용량에 대한 물질의 반응을 측정하는 데 사용됩니다. 유전율은 비유전율과 절대 유전율의 두 가지 유형으로 나뉘며, 그 중 유전율은 유전 물질 연구에서 일반적으로 사용됩니다. 다음을 포함하여 일반적으로 사용되는 유전체 재료가 많이 있습니다. 1. 산화물: 나노 티탄산 바륨(BaTiO3) , 나노 티타늄 이산화물(TiO2) , 알루미나(Al2O3) 등. 예: 티탄산 바륨(BaTiO3): 티탄산 바륨은 널리 사용되는 고성능 강유전성 세라믹입니다. 세라믹 재료는 재료의 유전 상수를 향상시키기 위해 폴리머 변형에 사용될 수 있습니다. 또한 커패시터, 세라믹 압전 재료, 센서 등의 분야에서도 ...
    더 읽어보기
< 11 12 13 14 15 16 17 18 >
[  총  18  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!