13929258449

admin@satnano.com

검색

검색

  • 05

    Mar

    솔루션에서 PPM, PPB, PPT의 상관관계는 무엇입니까?

    나노기술의 지속적인 발전과 함께 나노분말 분산은 중요한 나노소재로서 더욱 주목을 받고 있습니다. SAT NANO는 나노소재 생산 전문기업으로 고품질의 나노분말 분산액을 제공하고 있습니다. 이번 글에서는 솔루션 내 PPM, PPB, PPT의 변환과 각각의 의미를 소개하겠습니다. PPM은 "Parts Per Million"의 약자로 용액 내 물질의 농도를 나타내는 단위 중 하나입니다. 일반적으로 용액의 전체 중량에 대한 용해된 물질의 중량 비율을 100만분의 1로 나타냅니다. 예를 들어, 용액에 총 중량이 1000000g인 물질 A 10g이 포함되어 있는 경우 물질 A의 농도는 10PPM입니다. PPM과 마찬가지로 PPB도 10억 개의 부품에 포함된 물질의 질량을 나타내는 측정 단위입니다. 일반적으로 대기 오염...
    더 읽어보기
  • 22

    Mar

    유전체 재료로 사용되는 나노 재료

    유전체 재료는 전하를 저장할 수 있는 전기 절연 재료입니다. 유전 상수는 유전 물질의 중요한 성능 지표로, 전기장에서 전하 저장 용량에 대한 물질의 반응을 측정하는 데 사용됩니다. 유전율은 비유전율과 절대 유전율의 두 가지 유형으로 나뉘며, 그 중 유전율은 유전 물질 연구에서 일반적으로 사용됩니다. 다음을 포함하여 일반적으로 사용되는 유전체 재료가 많이 있습니다. 1. 산화물: 나노 티탄산 바륨(BaTiO3) , 나노 티타늄 이산화물(TiO2) , 알루미나(Al2O3) 등. 예: 티탄산 바륨(BaTiO3): 티탄산 바륨은 널리 사용되는 고성능 강유전성 세라믹입니다. 세라믹 재료는 재료의 유전 상수를 향상시키기 위해 폴리머 변형에 사용될 수 있습니다. 또한 커패시터, 세라믹 압전 재료, 센서 등의 분야에서도 ...
    더 읽어보기
  • 07

    Apr

    단결정, 다결정, 비정질 나노물질 소개

    나노기술의 발전으로 단결정, 다결정, 비정질 나노물질이 연구의 중심지가 되었습니다. 이러한 나노물질은 다양한 구조와 특성을 갖고 있으며 응용 범위가 넓습니다. 동관사이테신소재는 나노금속분말, 산화물분말, 탄화물분말, 합금분말 등 분말소재의 생산 및 판매에 주력하며 나노소재 시장의 선두주자로 자리매김했다. 1, 단결정 나노물질 단결정은 물질의 입자가 같은 방향으로 배열된 것을 말합니다. 단결정 나노소재는 고순도, 완전한 결정구조로 인해 고성능 전자부품, 전도체 소재, 광학소재 제조에 필수적인 소재이다. 예를 들어, 단결정 나노 금 분말은 광범위한 응용 분야를 가지고 있으며 전도성 슬러리, 태양 전지 전극, 바이오 센서 등에 사용될 수 있습니다. 2, 다결정 나노재료 다결정 입자는 서로 다른 방향으로 배열되어 ...
    더 읽어보기
  • 18

    Apr

    초미립 금속나노분말의 보관 및 운송방법

    나노기술의 지속적인 발전으로 나노 금속 초미세 분말의 사용이 점점 더 광범위해지고 있습니다. 그러나 보관 및 운송 중에 나노 금속 초미세 분말은 열 안정성이 낮고 쉽게 산화 및 가열되는 등 몇 가지 문제에 직면합니다. 따라서 나노금속 초미세분말의 안전한 보관과 운송을 보장하기 위해 몇 가지 조치를 취해야 합니다. 나노 금속 초미립분말의 안정성을 보장하기 위해서는 보관 및 운송 중에 효과적인 부동태화 조치를 취해야 합니다. 일반적으로 불활성 가스를 팽창시켜 부동태화 처리를 달성할 수 있습니다. 구체적으로, 소량의 공기(약 1%)를 함유한 불활성 가스로 장치를 천천히 채워 분말 표면의 안정적인 산화막 두께를 유지할 수 있습니다. 인플레이션 과정에서 인플레이션 속도, 인플레이션 금액 및 패시베이션 시간의 선택도 ...
    더 읽어보기
  • 24

    Apr

    그래핀 양자점 분말의 특성, 합성 및 응용을 이해하는 방법

    그래핀 양자점(GQD)은 그래핀 층 크기가 100nm 미만이고 층 수가 10개 미만인 새로운 유형의 탄소 기반 형광 물질을 말합니다. 일반적으로 그래핀 양자점에는 많은 종류의 탄소 형광 물질과 그래핀 양자점, 산화 그래핀 양자점, 부분적으로 환원된 산화 그래핀 양자점을 포함하여 유사한 구조와 특성을 가진 파생물입니다.   그래핀 양자점의 특성 그래핀 양자점의 UV 흡수 성능 그래핀 양자점의 C=C 이중 결합 구조로 인해 π - π 전이가 발생하여 짧은 파장 범위에서 많은 수의 광자를 흡수할 수 있습니다. 일반적으로 UV 흡수 스펙트럼의 260~320nm 범위에서 강한 흡수 피크가 나타나고 가시광선 범위까지 확장되는 테일링이 동반됩니다. 한편, n - π 전이 의 영향으로 인해 그래핀 양자점은 270~390n...
    더 읽어보기
  • 11

    May

    탄소양자점의 특성을 이해하는 글

    양자점 (QD)은 엑시톤의 보어 반경보다 작은 크기를 갖고 양자 구속 효과를 나타내는 반도체 나노입자를 말한다. 양자 구속 효과로 인해 양자점의 형광 방출은 직경 및 화학적 조성과 관련이 있습니다. 반도체 표면과 혼합함으로써 광학적, 광화학적 특성을 향상시킬 수 있습니다. 전통적인 양자점은 대부분 중금속 원소로 구성되어 있습니다. 이들의 뛰어난 성능은 생물학적 이미징, 전기화학, 에너지 변환 등의 분야에서 널리 활용되고 있지만, 중금속 원소는 환경 오염을 유발하고 유기체의 건강에 영향을 미칠 수 있습니다. 탄소 양자점(CQD)은 일반적으로 sp2/sp3 탄소 코어와 외부 산소/질소 작용기로 구성된 10nm 미만 크기의 단분산 구형 나노 탄소 소재를 의미합니다. 기존 반도체 양자점과 유사한 우수한 성능을 갖고...
    더 읽어보기
  • 27

    May

    알루미나 분말의 표면 개질 방법은 무엇입니까?

    알루미나 분말 의 표면 개질 방법은 무엇입니까 ? 일반적인 재료인 산화알루미늄은 세라믹, 코팅, 촉매 등의 생산에 흔히 사용됩니다. 그러나 복합 재료 충전이나 고성능 촉매 제조와 같은 일부 응용 분야에서는 성능 향상을 위해 알루미나의 표면 개질이 필요합니다. 그리고 안정성. 이 기사에서는 알루미나의 표면 개질 방법에 대해 설명합니다. 표면 개질은 특정 물질(개질제)을 다른 물질(개질되는 물질)의 표면에 도입하여 재료의 특성과 기능을 향상시키는 과정입니다. 알루미나의 표면 개질 공정에는 화학적 처리, 증착 등의 방법이 일반적으로 사용되며, 그 중 실란 커플링제(KH-560)에 의한 알루미나의 개질이 가장 일반적이다. 실란 커플링제(KH-560)는 우수한 표면 친화성과 반응성을 지닌 다목적 유기 규소 화합물입니...
    더 읽어보기
  • 27

    May

    초미세 탄화규소 분말의 표면 개질 방법은 무엇입니까?

    초미세 탄화규소 분말은 높은 화학적 불활성, 고경도, 고융점 등 우수한 특성을 지닌 우수한 무기재료로 제조업에서 널리 사용되고 있습니다. 그러나 표면 활성이 낮기 때문에 특정 산업 응용 시나리오에서는 우수한 성능을 달성하기가 어렵습니다. 따라서 초미립 탄화규소 분말의 표면 개질 방법에 대한 연구는 매우 중요하다. 이 기사에서는 초미세 탄화규소 분말의 두 가지 표면 개질 방법을 소개하고 개질된 분말을 테스트하고 특성화합니다. 첫째, 고분자 전해질을 통한 개질 방법이 소개된다. 이 방법은 양이온 고분자 전해질 폴리디메틸암모늄 클로라이드(PDADMAC) 또는 음이온 고분자 전해질 나트륨 폴리스티렌 설포네이트(PSS)를 사용하여 초미세 탄화규소 분말을 개질합니다. 구체적인 공정은 탈이온수에서 SiC 분말과 함께 P...
    더 읽어보기
  • 27

    May

    알루미늄 분말의 표면 개질 방법 및 응용

    알루미늄 분말은 일반적으로 사용되는 필러로 열 인터페이스 재료 및 산업용 코팅과 같은 분야에서 널리 사용됩니다. 그러나 기존의 알루미늄 분말은 점도가 높고 분산성이 낮으며 열 안정성이 좋지 않아 일부 특수 용도에서는 효율성이 제한되는 문제가 있습니다. 이러한 문제를 해결하기 위해 연구자들은 알루미늄 분말의 성능을 향상시키기 위한 많은 수정 방법을 수행했습니다. 알루미늄 분말의 표면 개질을 위한 비교적 효과적인 방법은 화학적 개질을 위해 실란 커플링제를 사용하는 것입니다. 예를 들어, 헥사데실트리메톡시실란, 도데실트리메톡시실란, 데실트리메톡시실란 및 옥틸트리메톡시실란은 모두 알루미늄 분말용 개질제로 사용될 수 있습니다. 이러한 개질제는 알루미늄 분말과 유기 매트릭스 사이의 상용성을 향상시키고 분산성과 열 안정...
    더 읽어보기
  • 29

    May

    단조공정에 질화붕소 윤활제 적용

    최근에는 유성윤활유가 수성윤활유로 대체되는 추세입니다. 질화붕소 코팅은 니켈 기반 합금, 고융점 합금 및 티타늄 가공 부품의 단조에 자주 사용되며, 이는 윤활을 제공할 뿐만 아니라 공작물 산화를 방지합니다. 단조윤활유의 특징 1. 국부적인 윤활부족을 방지하기 위해 표면을 균일하게 적셔준다. 2. 단조 금형 깊숙이 축적되어 공작물의 공차 또는 표면 품질에 영향을 미칠 수 있고 장비나 환경에 침전되거나 제거가 어렵기 때문에 잔류물이 없습니다. 3. 금형이 부식되지 않아야 하며 금형에 보호 코팅을 적용해야 합니다. 4. 특정 냉각 효과가 있습니다. 5. 자동 공급에 적합하며 바람직하게는 스프레이 방법에 적합합니다. 6. 환경을 오염시키지 않고 신체에 유해한 물질을 생성하지 않습니다. (사진은 이형코팅을 분사한 효...
    더 읽어보기
  • 06

    Jun

    분말의 분산 효과를 특성화하는 방법

    (1) 입자 크기 특성화 입자는 액체에 분산되어 현탁 시스템을 형성합니다. 입자 크기가 작을수록 시간이 지남에 따라 안정성이 높아질수록 분산력이 좋아지고 뭉칠 가능성이 줄어듭니다. 입자 크기 특성화는 일반적으로 표면 개질 전후의 입자 분산을 특성화하는 데 사용됩니다. 입자의 분산이 좋을수록 입자 크기 분포는 단분산 입자에 더 가까워집니다. 반대로, 입자 분산이 불량할수록 입자 크기 분포는 단분산 입자에서 거친 입자로 이동하는 경향이 있습니다. (2) 전자현미경 특성화 주사전자현미경은 액체계에서 입자의 존재상태를 특성화하는 가장 직관적인 방법이다. 입자를 액상에 분산시킨 후 적당량의 현탁액을 취하여 주사전자현미경 스테이지에 떨어뜨린다. 건조 후 전자현미경으로 관찰하고 사진을 찍어 분산성을 비교한다. (3) 제...
    더 읽어보기
  • 14

    Jun

    알루미늄 기반 복합재료에서 탄소나노튜브의 입자내 분산 향상

    초단 탄소나노튜브를 이용하여 독특한 입계분산을 갖는 탄소나노튜브(CNT) 강화 알루미늄 복합재를 얻었으며, 나노크기의 탄소나노튜브가 초미립자 알루미늄 입자 내에 균일하게 분포되어 있었습니다. 본 입계 탄소나노튜브/알루미늄 복합재료는 일반적인 입계 탄소나노튜브 분산을 갖는 CNT/Al 복합재료에 비해 전위 고정 및 유지력이 강해 강도와 연성이 모두 향상됩니다. 현재의 입자내 분산 전략은 강력하고 견고한 나노카본 강화 금속 매트릭스 복합재 제조에 대한 아이디어를 제공할 것입니다. 그림 1. 가변속 볼밀링, 소결, 열간압출 공정을 통한 길고 짧은 CNT/Al 복합재료 제조 모식도 그림 2. 긴(a) 및 짧은(b) CNT/Al 복합재료의 TEM 이미지. 압출 복합 재료의 입계 및 입계 탄소 나노튜브의 백분율 및 길...
    더 읽어보기
< 21 22 23 >
[  총  23  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!