-
분말 저장, 운송 및 사용 과정에서 나노 알루미늄 분말 은 활성이 낮고 외부 환경 요인(온도, 습도 등)의 영향을 덜 받아 제품에 대해 안정적인 성능을 갖기를 희망하는 경우가 많습니다. 장기. 한편, 높은 에너지 방출율과 우수한 연소 효율을 얻기 위해서는 고체 로켓 추진체 에서 높은 활성을 나타내는 것이 바람직하다. 따라서 나노알루미늄 분말의 활성 조절 및 항산화 특성에 대한 연구는 복잡하고 근본적인 문제이다. 나노금속분말 을 생산하는 과정에서 , Hongwu Nano는 입자 표면에 패시베이션 층/산화막을 만듭니다. 이러한 산화피막의 존재로 나노금속입자를 보호할 수 있고 안정성이 향상된다. 패시베이션층이란? 패시베이션 층은 패시베이션된 부분입니다. 패시베이션은 금속 표면을 쉽게 산화되지 않는 상태로 전환시켜...
더 읽어보기
-
안정적인 분산 시스템 의 형성은 정전기적 반발력 즉, 입자 표면에 흡착된 음전하가 서로 반발하여 입자 간의 흡착/응집을 방지하여 최종적으로 큰 입자를 형성하고 성층화/침강되는 것을 방지하고, 그러나 또한 사용합니다. 음전하를 흡착한 입자가 서로 접근함에 따라 서로 미끄러지는 입체 장애 효과 이론. 이러한 입체 장애 계면활성제는 일반적으로 비이온성 계면활성제이다. 정전기 반발 및 입체 장애 이론을 유연하게 사용하여 매우 안정적인 분산 시스템을 형성할 수 있습니다. 폴리머 흡착층은 특정 두께를 가지고 있어 주로 폴리머의 용매화층에 의존하여 입자의 상호 흡착을 효과적으로 차단할 수 있습니다. 분산제의 메커니즘: 1. 고체 입자의 표면에 흡착되어 액체-액체 또는 고체-액체 사이의 계면 장력을 감소시킵니다. 응집된 ...
더 읽어보기
-
CNTS가 담지된 금속나노입자의 제조방법은 크게 물리적 제조방법과 화학적 제조방법이 있다. 가장 일반적으로 사용되는 것은 화학적 준비 방법입니다. 화학적 제조 방법은 일반적으로 담체 CNTS에 금속 나노 입자가 균일하게 로딩됩니다. 화학적 준비의 일반적인 과정은 금속 프론트 드라이브가 원자로 복원되고 금속 원자가 나노 입자로 성장하고 담체 또는 안정제의 작용에 의해 특정 입자 크기의 촉매를 얻는 것입니다. 다른 제조 방법은 다른 크기와 다른 모양의 촉매를 얻을 수 있습니다. 구체적인 방법은 다음과 같습니다. 1. 침수 감소 방법 침지 환원법은 부하 촉매를 제조하는 전통적인 방법입니다. CNTS 부하 금속 나노 입자 촉매를 제조하는 구체적인 제조 과정은 다음과 같습니다. 특정 온도 및 특정 pH에서 금속 전면...
더 읽어보기
-
질소첨가탄소나노튜브는 물리화학적 성질이 우수한 신형 나노재료로서 응용전망이 광활하다. 먼저, 질소 도핑 탄소나노튜브는 화학기상증착법, 화학기상증착 아크방전법, 전기화학적 산화환원법, 졸겔법 등 다양한 방법으로 제조할 수 있다. 균일한 크기와 완전한 격자 구조의 특성. 둘째, 질소 도핑된 탄소나노튜브의 특성도 매우 우수하다. 질소 원자의 도핑으로 인해 탄소나노튜브의 전자 구조가 변경되어 순수 탄소나노튜브에 비해 우수한 전기촉매 활성, 전기화학적 성능, 광촉매 성능, 전도성, 기계적 강도 및 기타 특성을 갖는 질소 도핑된 탄소나노튜브가 생성됩니다. 따라서 질소 도핑 탄소나노튜브는 에너지 변환, 촉매 반응, 전자 장치, 생물 의학 및 기타 분야에서 널리 사용될 수 있습니다. 마지막으로, 질소 도핑된 탄소 나노튜브...
더 읽어보기
-
서론: 최근 몇 년 동안 단열재에 나노기술을 사용하는 것이 재료과학 분야에서 큰 주목을 받아왔습니다. 독특한 물리적, 화학적 특성을 지닌 나노입자는 단열재 제공을 위한 벌크 소재의 매력적인 대안이 되었습니다. 이번 글에서는 단열재로 일반적으로 사용되는 나노입자에 대해 논의하겠습니다. 단열용 나노입자: 1. 실리카 나노입자 : 실리카 나노입자는 단열 응용 분야에 널리 사용됩니다. 실리카는 융점이 높고 표면적 대 부피 비율이 높기 때문에 우수한 단열재입니다. 실리카 나노입자 기반의 단열재는 건물, 자동차, 항공우주 분야에 활용될 수 있습니다. 2. 탄소 나노튜브 : 탄소 나노튜브는 단열에 대한 큰 잠재력을 보여주는 또 다른 유형의 나노입자입니다. 열전도율이 뛰어나 효율적인 단열재로 사용할 수 있습니다. 탄소나노...
더 읽어보기
-
비가시성 물질이란 물체 표면에 빛이 반사되는 것을 줄이거나 없애서 물체를 눈에 보이지 않게 하거나 가시성을 감소시킬 수 있는 물질을 말합니다. 현재 일반적으로 사용되는 스텔스 재료의 원리는 다음과 같습니다. 굴절률 제어 원리: 재료의 굴절률과 주변 매질의 굴절률 차이를 활용하여 재료를 통과하는 빛의 반사 각도가 변경되어 물체를 숨기는 효과를 얻습니다. 흡수 원리 : 특정 파장의 빛을 흡수하는 특정 물질의 특성을 이용하여 물체 표면의 빛을 완전히 흡수하여 표면이 검게 보이거나 주변 환경의 색상과 유사하게 나타나 빛으로 인한 밝기를 피합니다. 반사 및 스텔스 효과의 어느 정도 달성. 메타물질 원리: 메타물질의 물리적 특성을 활용하여 특정 파장에서 음의 굴절률을 나타내거나 전자파에 대해 -1의 투과율을 나타내어 ...
더 읽어보기
-
나노입자의 코팅층 두께를 측정하려면 고급 장비와 기술을 사용해야 합니다. 가능한 측정 방법은 다음과 같습니다. 투과전자현미경(TEM): 고밀도 전자빔을 활용하여 나노입자의 구조와 특성을 관찰하고 측정하는 현미경입니다. 코팅층의 두께 측정을 위해 TEM은 입자의 단면 이미지를 관찰하여 코팅층의 두께를 결정할 수 있습니다. 주사전자현미경(SEM): 이 현미경은 나노입자의 구조와 특성도 관찰하고 측정할 수 있습니다. TEM과 달리 SEM은 투과된 전자빔 대신 전자빔을 사용합니다. SEM을 이용하면 샘플의 단면 이미지를 준비하여 코팅층의 두께를 확인할 수 있습니다. XPS(X선 광전자 분광법): XPS는 표면의 화학적 분석을 수행할 수 있습니다. 입자 표면의 X선 스펙트럼을 분석하면 코팅층의 조성과 두께를 알 수 ...
더 읽어보기
-
기술이 지속적으로 발전함에 따라 현대 산업에서 열전도성 나노재료 의 적용이 점점 더 광범위해지고 있습니다. 전자 장치에서 자동차 산업에 이르기까지 이들의 사용은 오늘날 첨단 기술 분야의 산업 표준이 되었습니다. 열전도성 나노재료 생산 전문 회사인 Dongguan SAT NANO는 산업 제조에서 열전도성 나노재료의 중요성과 역할을 이해하고 있습니다. 그리고 중요한 질문은 열전도성 나노물질을 얼마나 첨가하는가입니다. 첫째, 열전도성 나노소재의 특성을 이해해야 한다. 열전도성 나노물질은 입자 크기가 작기 때문에 열 에너지를 효율적으로 전달할 수 있습니다. 기존의 열 전도성 소재와 비교하여 상대적으로 적은 양의 첨가로 더 나은 열 전도성을 제공할 수 있습니다. 따라서 열전도성 나노물질의 첨가량은 일반적으로 매우 적...
더 읽어보기
-
금속나노입자는 의학, 전자, 에너지, 환경 등 다양한 분야에 응용이 가능한 널리 사용되는 소재이다. 크기가 매우 작고 표면적이 넓어 많은 재료의 성능을 향상시킬 수 있습니다. 그러나 금속 나노입자의 표면은 매우 활동적이고 주변 환경과 쉽게 반응하는 경우가 많으므로 표면을 보호하기 위한 보호층이 필요합니다. 이 기사에서는 금속 나노입자의 보호층의 역할을 탐구합니다. 보호층은 일반적으로 무기 또는 유기 물질로 구성된 금속 나노입자의 표면을 덮는 얇은 막이다. 이 박막은 금속 나노입자의 표면을 보호하고 주변 환경과 반응하는 것을 방지할 수 있습니다. 특히 촉매반응에서는 금속나노입자의 표면이 반응물과 반응하는 경우가 많으며, 보호층은 이러한 반응이 일어나는 것을 방지하여 반응의 선택성과 효율성을 향상시킬 수 있다....
더 읽어보기
-
소개: 나노기술은 의학에서 전자공학에 이르기까지 다양한 분야에서 점점 더 중요해지고 있습니다. 나노입자, 나노튜브 , 나노와이어를 포함한 나노재료 는 많은 나노기술 응용 분야의 필수 구성 요소입니다. 이러한 재료를 생산하려면 습식 및 건식 방법과 같은 특수 기술이 필요합니다. 이 기사에서는 건식 및 습식 방법이 무엇인지, 그 이점과 SAT NANO가 고품질 나노재료를 제공하는 방법을 살펴보겠습니다 . 건식 및 습식 방법은 나노물질을 제조하는 가장 일반적인 기술 중 두 가지입니다. 건식법은 용매를 사용하지 않고 나노물질을 생산하는 기술이고, 습식법은 액체 매질을 활용하는 기술이다. 건식 방법은 습식 방법에 비해 몇 가지 장점이 있습니다. 예를 들어, 건식 방법은 용매를 사용할 필요가 없기 때문에 더 간단하고 ...
더 읽어보기
-
클래스 I 및 클래스 II 재료는 재료 과학 분야의 두 가지 기본 개념으로, 재료의 결정 구조 유형을 설명하는 데 사용되며 반도체 및 금속과 같은 재료 연구에 자주 적용됩니다. 그렇다면 Class I 재료와 Class II 재료를 어떻게 구별합니까? 간단한 방법은 재료의 밀도에 따라 구별하는 것입니다. 유형 2 물질과 비교하여 유형 1 물질은 원자 배열이 더 촘촘하고 구조가 더 촘촘하기 때문에 밀도가 더 높습니다. 물론 이 방법은 동일한 화학 원소를 가진 재료를 비교하는 데에만 적합하며 원소 조성이 다른 재료에는 적용할 수 없습니다. 또 다른 방법은 X선 회절(XRD) 분석을 이용하는 것입니다. XRD는 재료 결정의 회절 패턴을 사용하여 결정 구조 유형을 결정할 수 있는 일반적인 재료 특성화 도구입니다. 실...
더 읽어보기
-
양자점 (QD)은 엑시톤의 보어 반경보다 작은 크기를 갖고 양자 구속 효과를 나타내는 반도체 나노입자를 말한다. 양자 구속 효과로 인해 양자점의 형광 방출은 직경 및 화학적 조성과 관련이 있습니다. 반도체 표면과 혼합함으로써 광학적, 광화학적 특성을 향상시킬 수 있습니다. 전통적인 양자점은 대부분 중금속 원소로 구성되어 있습니다. 이들의 뛰어난 성능은 생물학적 이미징, 전기화학, 에너지 변환 등의 분야에서 널리 활용되고 있지만, 중금속 원소는 환경 오염을 유발하고 유기체의 건강에 영향을 미칠 수 있습니다. 탄소 양자점(CQD)은 일반적으로 sp2/sp3 탄소 코어와 외부 산소/질소 작용기로 구성된 10nm 미만 크기의 단분산 구형 나노 탄소 소재를 의미합니다. 기존 반도체 양자점과 유사한 우수한 성능을 갖고...
더 읽어보기