탄소양자점 의 합성 탄소양자점 합성은 크게 하향식(Top-down) 방식과 상향식(Bottom-up) 방식으로 나눌 수 있다. 전처리, 준비 및 후속 처리를 통해 탄소 양자점은 크기 조절, 표면 부동태화, 헤테로원자 도핑 및 나노복합체를 요구 사항에 맞게 제어할 수 있습니다. 하향식 접근 방식 하향식 방법: 레이저 제거 방법, 전기화학 방법, 아크 방전 방법. 아크 방전 Xu 박사는 아크 방전법을 이용하여 탄소재를 탄소원으로 사용하여 청색 및 황색 형광성 탄소 나노입자를 합성했습니다. Bottiniet al. 단일벽 탄소나노튜브를 탄소원으로 사용하여 황록색 형광 탄소 양자점을 합성했습니다. Sunet al. 광전변환에 활용될 수 있는 10nm 이하의 나노복합체 입자크기를 갖는 탄소양자점을 제조하였다. 아크 ...
더 읽어보기
초단 탄소나노튜브를 이용하여 독특한 입계분산을 갖는 탄소나노튜브(CNT) 강화 알루미늄 복합재를 얻었으며, 나노크기의 탄소나노튜브가 초미립자 알루미늄 입자 내에 균일하게 분포되어 있었습니다. 본 입계 탄소나노튜브/알루미늄 복합재료는 일반적인 입계 탄소나노튜브 분산을 갖는 CNT/Al 복합재료에 비해 전위 고정 및 유지력이 강해 강도와 연성이 모두 향상됩니다. 현재의 입자내 분산 전략은 강력하고 견고한 나노카본 강화 금속 매트릭스 복합재 제조에 대한 아이디어를 제공할 것입니다. 그림 1. 가변속 볼밀링, 소결, 열간압출 공정을 통한 길고 짧은 CNT/Al 복합재료 제조 모식도 그림 2. 긴(a) 및 짧은(b) CNT/Al 복합재료의 TEM 이미지. 압출 복합 재료의 입계 및 입계 탄소 나노튜브의 백분율 및 길...
더 읽어보기
나노입자란 무엇인가? 나노입자(NP)는 일반적으로 3차원 공간에서 나노스케일(1~100nm)에서 최소 한 차원을 갖는 입상 물질로 정의됩니다. 나노입자는 구조 및 형태학적 차원에 따라 1차원(1D) 및 2차원(2D) 나노물질에 해당하는 0차원 나노물질(0D 나노물질)로 분류할 수 있습니다. 0D 나노입자는 3차원 공간에서 크기 제약을 받으며, 대표적인 예로는 금속 나노입자, 산화물 나노입자, 황화물 나노결정 등이 있습니다. 또한, 나노입자는 조성에 따라 단일 성분 구조(순수 금속, 단일 산화물 등)와 다성분 구조(코어-쉘 구조, 합금 나노입자, 이종 구조 등)로 더 세분화될 수 있으며, 구조적 복잡성은 기능적 성능에 직접적인 영향을 미칩니다. 나노입자 응집 및 분산이란 무엇인가? 나노입자 응집: 1차 나노입...
더 읽어보기
나노입자는 왜 응집되는가? 1. 표면 자유 에너지 구동 메커니즘 나노입자는 더 큰 비표면적과 불포화 표면 원자를 가지므로 표면 자유 에너지가 증가합니다. 다중 입자 접촉은 전체 표면적을 감소시키고, 계면 에너지를 방출하여 시스템의 자유 에너지를 낮출 수 있습니다. 이러한 에너지 최소화 경향은 입자의 자발적 응집을 뒷받침하는 고유한 열역학적 원동력이며, 나노스케일에서 응집의 일반적인 원인입니다. 2. 정전기와 전기이중층 불안정성 하전된 입자에 의해 형성된 전기 이중층은 정전기적 반발력에 의한 안정적인 분산 상태를 제공할 수 있습니다. pH가 등전점에 접근하거나 이온 강도가 증가하면 이중층이 압축되고 반발력이 감소하며, 입자 간의 인력이 우세해져 응집이 발생합니다. 이러한 전위 장벽의 안정성은 시스템의 응집 방...
더 읽어보기
1. 입자 크기 및 분포 특성 분석 동적 광산란(DLS): DLS는 현탁액 내 나노입자의 크기와 분포를 측정하는 데 가장 일반적으로 사용되는 기술 중 하나입니다. 입자의 브라운 운동에 의해 발생하는 시간에 따른 광산란 강도 변동을 측정하여 입자의 유체역학적 직경을 계산합니다. DLS는 입자 크기 분포의 폭을 평가하는 무차원 매개변수인 다분산 지수(PDI)도 제공합니다. 일반적으로 PDI 값이 0.3 미만이면 시료의 분산이 양호하고 입자 크기 분포가 균일함을 나타냅니다. PDI 값이 0.7보다 크면 시료의 응집이 심하거나 입자 크기 분포가 매우 불균일함을 의미합니다. 나노입자 추적 분석(NTA): NTA는 광학 현미경을 통해 시야 내 각 입자의 브라운 운동 궤적을 실시간으로 추적하고 기록한 후, 스토크스-아인...
더 읽어보기