-
그래 핀 양자점준 0 차원 나노 물질이고 내부 전자는 모든 방향으로 제한되어 있기 때문에 양자 구속 효과가 특히 중요하고 고유 한 특성이 많습니다. 이것은 전자, 광전자 및 전자기 분야에 혁명적 인 변화를 가져올 수 있습니다. 태양 전지, 전자 장비, 광학 염료, 바이오 마커 및 복합 입자 시스템에 사용됩니다. 그래 핀 양자점은 생물학, 의학, 재료 및 새로운 반도체 장치 분야에서 중요한 잠재적 응용 분야를 가지고 있습니다. 단일 분자 센서를 구현할 수 있으며, 반도체 레이저를 사용하는 초소형 트랜지스터 또는 온칩 통신을 사용하여 화학 센서, 태양 전지, 의료 영상 장치 또는 나노 규모 회로를 만들 수 있습니다.그래 핀 더블양자점다른 크기의 양자점 구조를 가지고 있습니다. 큰 양자점은 단일 전자 트랜지스터 ...
더 읽어보기
-
건물 에너지 절약에서 유리의 광 투과 및 단열은 매우 중요한 문제입니다. 천장이 투명하고 외창이 넓은 건물의 경우 태양열 복사로 인해 에어컨의 에너지 소비가 증가하여 막대한 에너지 낭비가 발생합니다. 이러한 현상을 개선하기 위해 나노크기의 안티몬이 도핑된 산화주석 ATO 가 등장하였다. Nano ATO(Antimony Doped Tin Oxide) 는 ATO 재료와 나노 재료의 장점을 결합한 일종의 n형 반도체 재료로 새로운 유형의 다기능 투명 전도성 재료입니다. 첫째, ATO 필름은 가시광선 영역에서 높은 광 투과율을 가질 뿐만 아니라 준금속 특성과 함께 우수한 전기 전도성을 나타내며 우수한 전기적 특성은 SnO2를 반도체로 만드는 Sb2O3의 도핑에 기인합니다. 둘째, ATO 필름은 우수한 반사 방지, ...
더 읽어보기
-
적외선은 명백한 열 효과가 있어 주변 온도를 쉽게 높일 수 있습니다. 일반 건축 유리는 단열 효과가 없으며 필름을 통해서만 얻을 수 있습니다. 따라서 건축 유리, 자동차 필름, 옥외 시설 및 기타 표면은 단열 및 에너지 절약 효과를 달성하기 위해 단열재를 사용해야 합니다. 최근 몇 년 동안 산화텅스텐은 우수한 광전자 특성으로 인해 널리 주목받고 있으며, 세슘 원소가 도핑된 산화텅스텐 분말은 적외선 영역에서 강한 흡수 특성을 가지면서 동시에 가시광선의 투과율이 높다. 근적외선 흡수율이 가장 우수한 무기 나노분말, 나노세슘텅스텐청동 은 근적외선 영역(파장 800-1100nm)에서 강한 흡수 특성을 가질 뿐만 아니라 가시광선 영역(파장 380-780nm)과 자외선 영역(파장 200-380nm) 또한 강력한 차폐 ...
더 읽어보기
-
고분자 필름 재료는 가공성 및 전기 절연성이 우수하여 산업 생산 및 일상 생활의 다양한 분야에서 널리 사용됩니다. 그러나 표면 저항이 높기 때문에 사용 중에 정전기가 축적되기 쉽습니다. 정전기가 어느 정도 축적되면 정전기 진공, 감전은 물론 화재 및 폭발과 같은 부정적인 결과를 초래하여 상당한 손실을 초래합니다. 이 문제를 해결하는 효과적인 방법 중 하나는 전도성 코팅을 사용하여 고분자 재료 표면에 전도성을 부여하는 것입니다. 전도성 고분자 복합재료 중요한 이론적 연구 가치와 광범위한 응용 전망을 가진 새로운 기능 재료 유형입니다. 전도성 고분자 재료는 높은 전도성, 반도체 특성, 정전 용량, 전기 화학적 활성을 가지며 일련의 광학 특성을 가지고 있습니다. 일반 폴리머와는 다른 특성을 가지고 있습니다. 현재...
더 읽어보기
-
질소첨가탄소나노튜브는 물리화학적 성질이 우수한 신형 나노재료로서 응용전망이 광활하다. 먼저, 질소 도핑 탄소나노튜브는 화학기상증착법, 화학기상증착 아크방전법, 전기화학적 산화환원법, 졸겔법 등 다양한 방법으로 제조할 수 있다. 균일한 크기와 완전한 격자 구조의 특성. 둘째, 질소 도핑된 탄소나노튜브의 특성도 매우 우수하다. 질소 원자의 도핑으로 인해 탄소나노튜브의 전자 구조가 변경되어 순수 탄소나노튜브에 비해 우수한 전기촉매 활성, 전기화학적 성능, 광촉매 성능, 전도성, 기계적 강도 및 기타 특성을 갖는 질소 도핑된 탄소나노튜브가 생성됩니다. 따라서 질소 도핑 탄소나노튜브는 에너지 변환, 촉매 반응, 전자 장치, 생물 의학 및 기타 분야에서 널리 사용될 수 있습니다. 마지막으로, 질소 도핑된 탄소 나노튜브...
더 읽어보기
-
그래핀 양자점(GQD)은 그래핀 층 크기가 100nm 미만이고 층 수가 10개 미만인 새로운 유형의 탄소 기반 형광 물질을 말합니다. 일반적으로 그래핀 양자점에는 많은 종류의 탄소 형광 물질과 그래핀 양자점, 산화 그래핀 양자점, 부분적으로 환원된 산화 그래핀 양자점을 포함하여 유사한 구조와 특성을 가진 파생물입니다. 그래핀 양자점의 특성 그래핀 양자점의 UV 흡수 성능 그래핀 양자점의 C=C 이중 결합 구조로 인해 π - π 전이가 발생하여 짧은 파장 범위에서 많은 수의 광자를 흡수할 수 있습니다. 일반적으로 UV 흡수 스펙트럼의 260~320nm 범위에서 강한 흡수 피크가 나타나고 가시광선 범위까지 확장되는 테일링이 동반됩니다. 한편, n - π 전이 의 영향으로 인해 그래핀 양자점은 270~390n...
더 읽어보기
-
양자점 (QD)은 엑시톤의 보어 반경보다 작은 크기를 갖고 양자 구속 효과를 나타내는 반도체 나노입자를 말한다. 양자 구속 효과로 인해 양자점의 형광 방출은 직경 및 화학적 조성과 관련이 있습니다. 반도체 표면과 혼합함으로써 광학적, 광화학적 특성을 향상시킬 수 있습니다. 전통적인 양자점은 대부분 중금속 원소로 구성되어 있습니다. 이들의 뛰어난 성능은 생물학적 이미징, 전기화학, 에너지 변환 등의 분야에서 널리 활용되고 있지만, 중금속 원소는 환경 오염을 유발하고 유기체의 건강에 영향을 미칠 수 있습니다. 탄소 양자점(CQD)은 일반적으로 sp2/sp3 탄소 코어와 외부 산소/질소 작용기로 구성된 10nm 미만 크기의 단분산 구형 나노 탄소 소재를 의미합니다. 기존 반도체 양자점과 유사한 우수한 성능을 갖고...
더 읽어보기
-
탄소양자점 의 합성 탄소양자점 합성은 크게 하향식(Top-down) 방식과 상향식(Bottom-up) 방식으로 나눌 수 있다. 전처리, 준비 및 후속 처리를 통해 탄소 양자점은 크기 조절, 표면 부동태화, 헤테로원자 도핑 및 나노복합체를 요구 사항에 맞게 제어할 수 있습니다. 하향식 접근 방식 하향식 방법: 레이저 제거 방법, 전기화학 방법, 아크 방전 방법. 아크 방전 Xu 박사는 아크 방전법을 이용하여 탄소재를 탄소원으로 사용하여 청색 및 황색 형광성 탄소 나노입자를 합성했습니다. Bottiniet al. 단일벽 탄소나노튜브를 탄소원으로 사용하여 황록색 형광 탄소 양자점을 합성했습니다. Sunet al. 광전변환에 활용될 수 있는 10nm 이하의 나노복합체 입자크기를 갖는 탄소양자점을 제조하였다. 아크 ...
더 읽어보기
-
속성 이산화통:이산화 바이나듐의 분자식은이다 VO2, 분자량은 82 94입니다 단일 클리닉 결정 구조를 가진 진한 청색 결정 분말입니다 물에 불용성, 산과 알칼리에 쉽게 용해됩니다 산에 용해 될 때, 그것은 사막 이온을 생성 할 수 없지만 양성의 이온 산화 바나듐 이온을 생성한다 건조한 수소 흐름에서 적색 열로 가열되면 트라이 옥스 바나듐으로 감소되며 공기 또는 질산에 의해 산화되어 바나듐에 바르 나나 디에 용해되어 바나 데이트를 형성 할 수 있습니다 그것은 탄소, 일산화탄소 또는 옥살산으로 바나듐 펜 독 사이드를 감소시킴으로써 생산 될 수있다 유리 및 도자기의 채색 제로 사용됩니다 이산화 바이나듐은 위상 전이 특성을 갖는 금속 산화물이며, 위상 전이 온도는 68 ● 위상 전이 전후의 구조적 변화는 전송에서...
더 읽어보기