검색

검색

  • 14

    Jan

    일부 박테리아에 대한 나노 구리 산화물 CuO의 항균 성능은 99.9% 이상까지 높을 수 있습니다.

    왜냐하면 나노 구리 산화물 CuO p형 반도체로 정공(CuO)+이 있어 환경과 상호작용하여 항균 또는 항균 효과를 발휘할 수 있습니다. 연구에 따르면 나노 CuO 폐렴과 Pseudomonas aeruginosa에 대한 우수한 항균력을 가지고 있습니다. 금속 산화물 나노 구리 산화물 CuO의 항균 과정은 다음과 같이 간단히 설명할 수 있습니다. 밴드 갭보다 큰 에너지로 빛의 여기에서 생성된 정공-전자 쌍은 환경에서 O2 및 H2O와 상호 작용하고 생성된 활성 산소 종 및 기타 자유 라디칼은 세포와 상호 작용합니다. 그 안의 유기 분자는 화학 반응을 거쳐 세포를 분해하고 항균 목적을 달성합니다. 나노구리산화물이 첨가된 플라스틱, 섬유 및 기타 소재에 소재 자체의 항균성을 시험하였으며, 대장균, 황색포도상구균, ...
    더 읽어보기
  • 04

    Mar

    은 코팅된 구리 분말이 널리 사용되며, 화학 복합 방법이 주요 제조 공정입니다.

    최근 몇 년 동안, 은 코팅 구리 분말 , 칩 전자부품의 전극, 뿐만 아니라 촉매 및 전자 페이스트. 분야에서도 현재 널리 사용되고 있다, 우리나라에서 사용되는 전자 페이스트는 기본적으로 미크론 수준의 순수 고가이며 주로 수입되는 은 분말,. 미크론 스털링 은 분말은 전자 제품의 대규모 기계 생산 공정에서 입자 침강 문제가 있습니다. 은 코팅 구리 분말은 이 문제를 효과적으로 해결할 수 있습니다.. 3] 은의 양과 제품 비용을 줄일 수 있고, 시장 전망이 넓습니다.. 은 코팅 구리 분말은 많은 용도가 있습니다 , 그러나 그 준비 공정은 더욱 개선되어야 한다. 변위 도금 공정이 간단하고 비용이 낮으나, 도금층이 상대적으로 느슨하고, 증착 속도 조절이 용이하지 않다. 무전해 도금층의 두께가 균일하고 핀홀 발생률...
    더 읽어보기
  • 04

    Mar

    나노 구리 산화물 분말의 일반적인 용도는 무엇입니까

    의 1차 입자 크기 매개변수 나노 구리 산화물 :20nm, 50nm, 100나노미터, 순도 99% 최소. 나노 구리 산화물의 응용: 1. 나노 구리 산화물은 중요한 다기능 무기 재료, 인쇄 및 염색, 세라믹, 유리 및 의약 및 기타 분야에서 널리 사용되는. 2. 나노 구리 산화물은 로켓 추진제의 연소 속도 촉매로도 사용할 수 있습니다. 추진제의 연소 속도를 크게 높이고 압력 지수를 낮출 수 있을 뿐만 아니라, 우수한 촉매 효과를 가질 수 있습니다. AP 합성 추진제. 3. 나노 구리 산화물은 작은 입자 크기, 큰 비표면적 및 높은 촉매 활성,의 특성을 가지므로 전기, 자기, 촉매, 등에서 특이한 특성을 나타냅니다. 4] 초전도 재료, 열전 재료 및 감지 재료. 응용 가능성이 높습니다.. 4. 산화구리는 적색...
    더 읽어보기
  • 04

    Mar

    은도금된 구리 분말은 전도성 접착제, 전도성 코팅, 폴리머 페이스트에 널리 사용될 수 있습니다.

    그만큼 은도금 구리 분말 무전해 도금 기술을 채택하여 초미세 구리 분말과 니켈 분말 표면에 두께가 다른 은도금을 형성합니다. 우수한 내산화성, 우수한 전기 전도성, 낮은 저항률, 높은 분산 및 높은 안정성. 은도금 구리 분말은 이상적인 전도성 분말이며 저비용 및 고효율을 위한 이상적인 재료입니다. 그만큼 은 코팅 구리 분말 이 제품의 수입 성형 및 표면 처리 장비와 환경 친화적인 시안화물이 없는 화학 도금 공정을 채택하여 전기 전도성이 좋은 은도금 구리 분말을 개발합니다. 분말의 체적 저항률은 1.8×10- 3Ω·cm. 전도성 코팅은 전도성이 높은 필러,로 만들어집니다(수지에 대한 전도성 필러의 체적 저항률은 75:25,입니다. 체적 저항률은 4.5×10-3Ω·cm입니다. ), 마이그레이션 저항이 강함(일반...
    더 읽어보기
  • 14

    Apr

    나노 입자를 수정하고 분산시키는 방법

    화학적 변형 및 분산은 나노 입자의 표면 그룹을 사용하여 반응성 유기 화합물과 화학 결합을 형성하는 것입니다. 나노 입자는 표면에 있는 분지쇄 또는 유기 화합물 그룹으로 인해 유기 매질에 용해됩니다. 분산. 화학적 변형에는 일반적으로 두 가지 방법이 있습니다. 하나는 고분자의 말단기를 사용하여 나노 입자의 표면 그룹과 화학적으로 반응하여 고분자를 나노 입자의 표면에 그래프트하는 것입니다. 두 번째는 중합성 유기물의 중합 반응을 사용하는 것입니다. 나노입자 표면의 활성점에 작은 분자가 존재하여 나노입자 표면에 고분자층을 형성. 또한 , 나노 입자의 분산은 종종 물리적 분산과 화학적 분산을 결합하여 수행됩니다 . 예를 들어 , 초음파 분산 과정에서 , 적절한 양의 분산제를 추가하면 분산 효과가 크게 향상됩니다....
    더 읽어보기
  • 19

    Apr

    액체 매질에서 초미세 분말의 분산 기술 및 방법은 무엇입니까

    1차 입자 크기,의 정확한 데이터를 얻으려면 입자 크기 테스트에서 덩어리진 입자를 열어 입자 단량체를 형성하고 매체에 균일하게 분산되도록 유지해야 하는 경우가 많습니다. 이 작업을 .라고 합니다. 1분산". 분산 시스템에 대한 레이저 입자 크기 분석기의 요구 사항은 "편석 없는 분산".입니다. 액체 매체의 초미세 입자에 사용할 수 있는 분산 기술 및 방법은 다음과 같습니다. 1. 초음파 분산. 액체에서 초음파의 캐비테이션 효과를 사용하여 덩어리를 분해합니다. 2. 기계적 교반 및 분산. 블레이드 회전의 기계적 작용을 사용하여 덩어리진 입자를 분해하고 입자를 액체에 균일하게 분포시킵니다. 기계적 분산은 기계적 힘을 사용하여 입자 덩어리를 파괴하는 것으로 가장 널리 사용되는 초미세 분...
    더 읽어보기
  • 09

    Jun

    슈퍼커패시터 전극 재료 이산화망간 제조 방법은 무엇입니까

    슈퍼커패시터는 대용량의 장점으로 인해 시동 전원, 펄스 전원 공급, 군사, 이동 통신 장치, 컴퓨터 및 전기 자동차에 널리 사용되는 새로운 유형의 에너지 저장 요소,입니다. , 대전류의 빠른 충방전,과 긴 사이클 수명. 및 다른 에너지 저장 메커니즘,에 따른 기타 연구 분야. 슈퍼커패시터는 다음 세 가지 유형으로 나눌 수 있습니다. 레이어 커패시터, 패러데이 의사 커패시터 및 하이브리드 슈퍼 커패시터. 전기 이중층 커패시터는 주로 전극/전해질 사이의 계면에 형성된 전기 이중층을 통해 에너지를 저장하며, 이러한 커패시터는 높은 전력 밀도와 우수한 사이클 성능을 갖는다. 패러데이 유사 축전기는 주로 전극 표면 또는 벌크 상의 2차원 공간에서 빠르고 가역적인 화학적 흡착/탈착 또는 산화환원 반응을 통해 에너지를 ...
    더 읽어보기
  • 01

    Sep

    이산화망간 mno2의 특성과 용도는 무엇입니까

    1.물리적 성질 외관 및 특성: 흑색 또는 흑색 갈색 결정성 또는 무정형 분말 상대 분자량: 86.94 화학식: mno2 융점(℃): 535(분해) 상대 밀도(물u003d1) 5.03 끓는점(°C): 535°c 용해도: 물에 불용성, 질산에 불용성 보관: 밀폐되고 서늘한 곳에 보관 2.화학적 성질 이산화망간 는 팔면체 모서리의 상단에 있는 산소 원자,이고 팔면체.의 망간 원자 [mno2 팔면체는 단일 또는 이중 사슬을 형성하도록 연결되어 있습니다. 표면 몸체는 육각형으로 밀집되어 있습니다. 또는 입방밀폐. 산화: 이산화망간은 염을 형성하지 않는 산화물, 비 양쪽성 산화물(산이나 알칼리와 반응하지 않음): 환원제.를 만나면 산화됩니다. , 이산화망간을 수소 기류에서 1400K로 가열하여 산화망간을 얻는 단계;...
    더 읽어보기
  • 09

    Jun

    나노 분말의 특성화---비표면적 측정

    비표면적은 단위 질량당 물질의 표면적(㎡/g). 초미세 분말 재료, 특히 나노 분말 재료.의 가장 중요한 물성 중 하나입니다.. 활성, 흡착, 촉매 및 기타 특성. 중요한 물리적 특성. 따라서, 연구, 다양한 초미세 분말 재료의 제조 및 응용,에서 매우 중요합니다. 비표면적을 측정하기 위해. 분말의 비표면적은 입자 크기, 입자 크기 분포, 입자 모양 및 표면 거칠기,와 같은 많은 요인과 관련이 있으며 분말의 포괄적인 반영입니다. 다분산성. 분말의 비표면적을 결정하는 방법은 공기투과법, BET 흡착법, 침투열법, 수은침입법, x-선 소각산란법, 등 분말의 비표면적을 결정하는 방법이 많다,. 등. 또한, 측정된 분말의 입도 분포와 관찰된 입자 형상 계수. 계산. 위의 방법, BET 저온 질소 흡착 방법은 가장 ...
    더 읽어보기
  • 09

    Jun

    나노물질의 특성화-나노분말의 구조분석

    특성화 및 테스트 기술은 나노물질을 과학적으로 식별하는 기본적인 방법입니다, 다양한 구조를 이해하고, 고유한 특성을 평가합니다. 나노물질 특성화의 주요 목적은 나노물질의 물리적 및 화학적 특성을 결정하는 것입니다, 형태, 크기, 입자 크기, 화학 조성, 결정 구조, 밴드 갭 및 광 흡수 특성. 등 나노 물질의 상 구조와 결정 구조는 현재 물질의 성능에 중요한 역할을 한다., 현재, 구조 분석 방법 나노 분말 일반적으로 다음과 같이 사용됩니다. 1. X선 회절 분석 xrd는 x-ray diffraction,의 약자로, x-ray diffraction,의 연구 방법인 x-ray diffraction,은 물질의 조성, 원자의 구조나 형태와 같은 정보를 얻기 위한 연구 방법입니다. x-ray 회절로 물질의 회절 패...
    더 읽어보기
  • 04

    Aug

    Nano ATO Antimony Tin Oxide 분말은 단열재에 사용할 수 있습니다.

    건물 에너지 절약에서 유리의 광 투과 및 단열은 매우 중요한 문제입니다. 천장이 투명하고 외창이 넓은 건물의 경우 태양열 복사로 인해 에어컨의 에너지 소비가 증가하여 막대한 에너지 낭비가 발생합니다. 이러한 현상을 개선하기 위해 나노크기의 안티몬이 도핑된 산화주석 ATO 가 등장하였다. Nano ATO(Antimony Doped Tin Oxide) 는 ATO 재료와 나노 재료의 장점을 결합한 일종의 n형 반도체 재료로 새로운 유형의 다기능 투명 전도성 재료입니다. 첫째, ATO 필름은 가시광선 영역에서 높은 광 투과율을 가질 뿐만 아니라 준금속 특성과 함께 우수한 전기 전도성을 나타내며 우수한 전기적 특성은 SnO2를 반도체로 만드는 Sb2O3의 도핑에 기인합니다. 둘째, ATO 필름은 우수한 반사 방지, ...
    더 읽어보기
  • 01

    Jul

    Fisher 입자 크기와 레이저 입자 크기의 차이 및 입자 크기 테스트에서 샘플 분산 방법 공유

    Fisher의 방법은 분말 축적을 통과하는 공기의 속도를 측정한 다음 Kozeny-Carman 공식에 따라 분말의 평균 입자 크기를 구하는 비교적 간단한 입자 크기 측정 방법입니다. 그러나 Fisher법은 상대적인 측정법으로 분말의 실제 입도를 정확히 결정할 수 없으며 공정 및 제품의 품질을 관리하기 위해서만 사용된다. Fisher의 방법은 비교적 규칙적인 분말에 대한 현미경 측정 결과와 일치합니다. Fisher 입자 에 의해 측정된 평균 입자 크기 Dsv 크기 분석기는 레이저 입자 크기 측정으로 계산된 D(3,2)와 유사합니다. 그러나 실제로 Fisher 입도분석기를 측정하여 레이저 입도 는 입도분포를 기준으로 하고 D(3,2)는 입자의 구형에 따라 계산한다. 즉, 시험할 입자가 구형에 가까울수록 그 차이...
    더 읽어보기
< 1 2 3 4 5 6 7 8 >
[  총  8  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!