검색

검색

  • 27

    May

    초미세 탄화규소 분말의 표면 개질 방법은 무엇입니까?

    초미세 탄화규소 분말은 높은 화학적 불활성, 고경도, 고융점 등 우수한 특성을 지닌 우수한 무기재료로 제조업에서 널리 사용되고 있습니다. 그러나 표면 활성이 낮기 때문에 특정 산업 응용 시나리오에서는 우수한 성능을 달성하기가 어렵습니다. 따라서 초미립 탄화규소 분말의 표면 개질 방법에 대한 연구는 매우 중요하다. 이 기사에서는 초미세 탄화규소 분말의 두 가지 표면 개질 방법을 소개하고 개질된 분말을 테스트하고 특성화합니다. 첫째, 고분자 전해질을 통한 개질 방법이 소개된다. 이 방법은 양이온 고분자 전해질 폴리디메틸암모늄 클로라이드(PDADMAC) 또는 음이온 고분자 전해질 나트륨 폴리스티렌 설포네이트(PSS)를 사용하여 초미세 탄화규소 분말을 개질합니다. 구체적인 공정은 탈이온수에서 SiC 분말과 함께 P...
    더 읽어보기
  • 30

    May

    실리콘 분말의 생산 방법과 용도는 무엇입니까?

    실리콘 파우더 (마이크론 및 나노미터 규모 포함) 높은 화학적 활성, 넓은 비표면적, 그리고 반도체 특성으로 인해 다양한 분야에서 광범위하게 활용됩니다. 예를 들면 다음과 같습니다. 1. 전자 및 반도체 산업 집적회로 및 칩:고순도 실리콘 분말(99.999% 이상)은 단결정 실리콘과 다결정 실리콘을 제조하는 원료로, 반도체 소자, CPU, GPU 및 기타 칩에 사용됩니다. 태양광 산업: 태양 전지의 실리콘 웨이퍼는 실리콘 분말(CVD법으로 성장시킨 실리콘 잉곳을 슬라이스하는 것과 같은)로부터 가공됩니다. 전자 포장재:나노 실리콘 분말은 전도성 접착제 및 열 충진재로 사용되어 전자 부품의 방열 및 전도성을 향상시킵니다. 2. 새로운 에너지와 배터리 리튬이온전지 음극재료:나노실리콘 분말은 기존 흑연 음극을 대체...
    더 읽어보기
  • 29

    Oct

    알루미늄 실리콘 합금의 열화처리 방법

    변성처리, 결정립 미세화, 1차상 미세화 또는 형태변화 등의 의미는 서로 다르며, 이러한 내용을 요약하여 변성처리라는 용어를 사용하기도 한다. (1) 열화처리. 간단한 이진법의 경우 Al Si 합금 , 11%~13% Si를 함유하는 Z102와 같은, 그것은 전형적인 공정 합금입니다.그 조직은 거친 바늘 모양(겹쳐져야 함) 실리콘과 알파(Al) 고용체의 공정, 그리고 소량의 블록 모양의 1차 실리콘(합금 조성이 상한선에 치우쳐 있음)으로 구성됩니다.합금의 기계적 성질은 높지 않으며, 인장 강도는 140MPa를 초과하지 않고 신장률은 3% 미만입니다.변성 처리를 위해 주입하기 전에 Na 또는 NaF를 함유하는 개질제(2-3%)를 용융물에 첨가하면 공정점이 오른쪽으로 이동하고 공정 온도가 변성 처리 후 낮아져 원...
    더 읽어보기
  • 03

    Dec

    나노입자의 응집과 분산은 무엇인가

    나노입자란 무엇인가? 나노입자(NP)는 일반적으로 3차원 공간에서 나노스케일(1~100nm)에서 최소 한 차원을 갖는 입상 물질로 정의됩니다. 나노입자는 구조 및 형태학적 차원에 따라 1차원(1D) 및 2차원(2D) 나노물질에 해당하는 0차원 나노물질(0D 나노물질)로 분류할 수 있습니다. 0D 나노입자는 3차원 공간에서 크기 제약을 받으며, 대표적인 예로는 금속 나노입자, 산화물 나노입자, 황화물 나노결정 등이 있습니다. 또한, 나노입자는 조성에 따라 단일 성분 구조(순수 금속, 단일 산화물 등)와 다성분 구조(코어-쉘 구조, 합금 나노입자, 이종 구조 등)로 더 세분화될 수 있으며, 구조적 복잡성은 기능적 성능에 직접적인 영향을 미칩니다. 나노입자 응집 및 분산이란 무엇인가? 나노입자 응집: 1차 나노입...
    더 읽어보기
  • 03

    Dec

    나노입자가 응집되고 분산되는 이유는 무엇입니까?

    나노입자는 왜 응집되는가? 1. 표면 자유 에너지 구동 메커니즘 나노입자는 더 큰 비표면적과 불포화 표면 원자를 가지므로 표면 자유 에너지가 증가합니다. 다중 입자 접촉은 전체 표면적을 감소시키고, 계면 에너지를 방출하여 시스템의 자유 에너지를 낮출 수 있습니다. 이러한 에너지 최소화 경향은 입자의 자발적 응집을 뒷받침하는 고유한 열역학적 원동력이며, 나노스케일에서 응집의 일반적인 원인입니다. 2. 정전기와 전기이중층 불안정성 하전된 입자에 의해 형성된 전기 이중층은 정전기적 반발력에 의한 안정적인 분산 상태를 제공할 수 있습니다. pH가 등전점에 접근하거나 이온 강도가 증가하면 이중층이 압축되고 반발력이 감소하며, 입자 간의 인력이 우세해져 응집이 발생합니다. 이러한 전위 장벽의 안정성은 시스템의 응집 방...
    더 읽어보기
  • 04

    Dec

    나노입자 응집과 분산을 어떻게 특성화할 수 있을까?

    1. 입자 크기 및 분포 특성 분석 동적 광산란(DLS): DLS는 현탁액 내 나노입자의 크기와 분포를 측정하는 데 가장 일반적으로 사용되는 기술 중 하나입니다. 입자의 브라운 운동에 의해 발생하는 시간에 따른 광산란 강도 변동을 측정하여 입자의 유체역학적 직경을 계산합니다. DLS는 입자 크기 분포의 폭을 평가하는 무차원 매개변수인 다분산 지수(PDI)도 제공합니다. 일반적으로 PDI 값이 0.3 미만이면 시료의 분산이 양호하고 입자 크기 분포가 균일함을 나타냅니다. PDI 값이 0.7보다 크면 시료의 응집이 심하거나 입자 크기 분포가 매우 불균일함을 의미합니다. 나노입자 추적 분석(NTA): NTA는 광학 현미경을 통해 시야 내 각 입자의 브라운 운동 궤적을 실시간으로 추적하고 기록한 후, 스토크스-아인...
    더 읽어보기
< 1 2 3 4 5 6 7 8
[  총  8  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!