재료의 소결은 몸체의 치밀화와 몸체 내 입자의 성장이라는 적어도 두 가지 과정을 포함합니다. 곡물의 수명은 일반적으로 곡물 경계의 이동을 통해 달성됩니다. 입자 성장 동역학의 고전 이론에 따르면 곡선형 입자 경계의 두 측면 사이의 자유 에너지 차이는 인터페이스가 곡률 중심을 향해 이동하도록 하는 원동력입니다. 공백에서는 대부분의 결정립계가 곡선입니다. 각 입자의 중심에서 일부 입자 경계는 오목하고 다른 입자 경계는 볼록합니다. 볼록한 표면의 계면 에너지는 오목한 표면의 계면 에너지보다 크므로 원자 또는 이온이 볼록한 표면에서 오목한 표면으로 전이되어 입자 경계가 볼록한 표면의 곡률 중심을 향해 이동하게 됩니다. 결과적으로 오목한 결정립 경계를 가진 일부 결정립은 성장하는 반면, 볼록한 결정립 경계를 가진 다...
더 읽어보기
고엔트로피 합금(HEA)은 거의 동일한 원자비로 5개 이상의 원소로 구성된 새로운 유형의 구조 재료로, 높은 엔트로피 효과, 격자 왜곡 효과, 느린 확산 효과, 칵테일 효과와 같은 특성을 나타냅니다. 레이저 클래딩 기술은 높은 가열 온도와 빠른 냉각 속도로 인해 HEA 클래딩층의 경도, 내마모성, 내부식성을 크게 향상시킬 수 있습니다. 본 논문에서는 레이저 클래딩의 효과를 조사합니다.안면 경련그리고 모에게AlCoCrFeNi클래딩 층의 미세 구조와 기계적 특성에 대한 고엔트로피 합금. 본 논문에서는 TiC 함량이 AlCoCrFeNi 고엔트로피 합금 클래딩층의 미세조직과 내마모성에 미치는 영향을 조사한다. 레이저 클래딩 기술을 이용하여 40CrNiMo강 표면에 AlCoCrFeNi 2xMo xTiC (x=0, 0...
더 읽어보기
그래핀 양자점이란? 그래핀은 광범위한 응용 가능성을 가지고 있지만, 밴드갭이 없고, 물 속에서 분산이 낮으며, 분광 흡수도가 낮기 때문에 광전자, 생물 이미징, 반도체 등 여러 분야에 적용하기 어렵습니다. 따라서 그래핀 양자점(GQD)을 제조하는 것은 그래핀의 밴드갭을 조절하고 나노소자에 적용하는 효과적인 방법입니다. 그래핀 플레이크의 측면 크기가 나노 크기로 감소하면 그래핀 양자점(GQD)이 되는데, 이는 5층 이하의 그래핀 플레이크로 구성된 영차원(0D) 물질입니다. 대부분의 그래핀 양자점은 원형이나 타원형이지만, 삼각형이나 육각형의 점들도 있습니다. 그래핀 양자점 (GQD) 대 그래핀 이자형 양자 구속 효과로 인해 GQD에서 에너지 밴드가 크기에 따라 열리는 것은 GQD와 그래핀 사이의 명확한 경계를 ...
더 읽어보기
재료 가공 및 화학 생산 분야에서 커플링제, 가교제, 분산제는 각기 다른 기능을 가진 세 가지 일반적인 첨가제이지만, 모두 재료 특성에 중요한 영향을 미칩니다. 아래에서는 정의, 주요 특징, 일반적인 유형, 그리고 핵심 차이점을 중심으로 자세히 설명합니다. 커플링제 커플링제는 서로 다른 특성을 가진 두 재료 사이의 계면에서 무기계와 유기계를 연결하는 "외교관"처럼 "다리" 역할을 하는 일종의 화학 물질입니다. 커플링제의 핵심 기능은 무기계와 유기계 재료 사이의 계면 결합을 개선하여 복합 재료의 전반적인 성능을 향상시키는 것입니다. 모구조: 분자는 일반적으로 두 개의 서로 다른 작용기를 포함하고 있으며, 한쪽 끝은 친수성 무기기(예: 실리콘 산소 결합, 티타늄 산소 결합 등)로, 무기 재료(예: 유리, 세라믹...
더 읽어보기
태양광 산업 및 전자 패키징 분야에서 전도성 페이스트에 대한 수요는 고은 함량에서 저은 함량, 심지어 무은 함량으로 변화하고 있습니다. 은 분말은 우수한 전도성과 화학적 안정성을 가지고 있지만, 가격이 비싸고 자원이 부족하며 전기 이동(electromigration) 현상이 발생하기 쉽습니다. 반면 구리는 은 다음으로 전도성이 뛰어나고 가격은 은의 약 1/100 수준입니다. 따라서 은 분말 대신 저가 구리 분말을 사용하는 것이 비용 절감의 중요한 방법이 되었습니다. 그러나 구리 분말 표면은 산화되기 쉽고 전기 절연성 산화물의 얇은 층을 형성하여 전도성과 신뢰성을 심각하게 저하시킵니다. 따라서 구리 분말 산화를 방지하는 것은 은 페이스트를 구리 페이스트로 대체하는 데 있어 핵심적인 기술적 과제입니다. 산화 메...
더 읽어보기