-
1、 안전 및 환경 보호 나노 마그네슘 산화물은 안전성과 환경 친화성이 매우 높습니다. 나노산화마그네슘은 무독성, 무해한 소재로 기존의 산화마그네슘 소재에 비해 강도와 내구성이 높을 뿐만 아니라 내부식성과 내마모성이 우수해 다양한 혹독한 환경에서도 장기간 사용할 수 있다. 2, 강력한 흡착력 나노 마그네슘 산화물은 흡착력이 강하여 실내 공기의 유해 물질을 효과적으로 흡착할 수 있습니다. 동시에 습기를 흡수하고 실내 습도를 높이며 사람들의 생활 환경을 개선할 수 있습니다. 3, 가공 용이 나노 산화 마그네슘은 가소성과 가공성이 우수하며 기계적 또는 화학적 방법으로 쉽게 가공하여 다양한 분야의 요구를 충족시킬 수 있습니다. 예를 들어, 실내 공기에서 유해 물질을 제거하기 위해 다양한 형태의 흡착제로 만들 수 있...
더 읽어보기
-
나노 금속 분말은 전자, 자성 재료, 자동차 산업, 군사 산업 및 분말 야금과 같은 분야에서 광범위한 응용 전망을 가지고 있습니다. 예를 들어, 철 , 알루미늄, 아연 , 티타늄, 니켈, 크롬, 탄탈륨, 코발트 등과 같은 나노 물질이 생산되었습니다. 나노 금속 분말의 최적의 성능을 달성하는 데 가장 중요한 요소는 나노 금속 분말의 균일한 분산입니다. 금속 나노 분말은 입자 크기가 작고 표면 에너지가 높기 때문에 자발적으로 응집되는 경향이 있습니다. 따라서 나노 금속 분말의 매질 내 분산도를 어떻게 향상시키는 것이 나노 분말 소재의 응용에 있어 핵심 기술이다. 한 가지 방법은 기계적 분산으로 금속 분말 간의 응집을 깨고 고속 전단, 압력, 자력 및 기타 방법을 통해 용매에 분산시킵니다. 이 방법은 철, 구리,...
더 읽어보기
-
나노 -크롬-니켈-철 합금에는 몇 가지 고유한 특성이 있습니다. 첫째, 자기 특성이 우수하여 전자기기, MRI 기기 등 자성이 필요한 응용 분야에 유용하다. 둘째, 부식에 대한 저항성이 높아 해양 환경을 비롯한 다양한 환경에서 사용하기에 이상적입니다. 셋째, 높은 강도와 내구성을 나타내어 공작기계 및 기타 고성능 장비 제조에 이상적입니다. 마지막으로 고유한 특성으로 인해 수많은 화학 공정에서 촉매로 사용할 수 있습니다. 적용 측면에서 나노-크롬-니켈-철 합금은 광범위한 산업 분야에서 사용됩니다. 전자 산업에서는 자기 기록 헤드, 미세 전자 기계 시스템 및 기타 전자 부품을 만드는 데 사용됩니다. 항공우주 산업에서는 제트 엔진 부품, 랜딩 기어 및 기타 중요한 항공기 부품을 제조하는 데 사용됩니다. 이 재...
더 읽어보기
-
1. 세슘 텅스텐 브론즈 의 화학적 성질 세슘 텅스텐 브론즈는 일종의 비화학양론적 화합물인 청색 흑색 분말입니다. 영어 이름은 Cesium Tungsten Bronze이고 화학식은 CsxWO3입니다. 순도는 일반적으로 99.9%보다 높습니다. 입자 크기가 균일하고, 1차 입자 크기는 약 30nm, 느슨한 밀도는 1.5g/ml, 비표면적은 50m2/g입니다. 결정 구조는 결정성이 높고 분산이 좋은 산소 정팔면체 구조입니다. 산소 8면체의 특수 구조로 인해 세슘 텅스텐 청동은 근적외선 흡수 특성이 우수하고 내후성이 우수하며 물리적 및 화학적 흡착 능력이 높으며 저항률이 낮고 저온 초전도성이 우수합니다. 네트워크 데이터에 따르면 세슘 텅스텐 브론즈는 근적외선 영역에서 최대 90%의 차단율을 보입니다. 일반적으로 ...
더 읽어보기
-
세슘 텅스텐 브론즈 ( CsxWO3)는 특별한 산소 팔면체 구조를 가진 비화학양론적 기능성 화합물입니다. 저항률이 낮고 저온 초전도성이 있으며 기계적, 광학적, 열적 특성이 우수합니다. 당사에서 생산하는 나노 세슘 텅스텐 브론즈 분말은 입자가 균일하고 분산성이 우수한 근적외선 흡수 효과가 큰 나노 재료입니다. 근적외선 영역(파장 800~1200nm)에서 흡수가 좋고 가시광선 영역에서 투과율이 높습니다. 나노 세슘 텅스텐 브론즈 분말로 제조한 박막의 가시광선 투과율은 70% 이상이다. 그것은 준비된 유리 제품이 더 나은 투명성과 단열 효과를 갖도록 할 수 있어 건물 유리창 및 자동차 창으로 사용하기에 적합합니다. Cs0.33WO3 입자는 독특한 분자 구조, 큰 비표면적, 우수한 분산 성능, 높은 강도 및 우수...
더 읽어보기
-
서론: 최근 몇 년 동안 단열재에 나노기술을 사용하는 것이 재료과학 분야에서 큰 주목을 받아왔습니다. 독특한 물리적, 화학적 특성을 지닌 나노입자는 단열재 제공을 위한 벌크 소재의 매력적인 대안이 되었습니다. 이번 글에서는 단열재로 일반적으로 사용되는 나노입자에 대해 논의하겠습니다. 단열용 나노입자: 1. 실리카 나노입자 : 실리카 나노입자는 단열 응용 분야에 널리 사용됩니다. 실리카는 융점이 높고 표면적 대 부피 비율이 높기 때문에 우수한 단열재입니다. 실리카 나노입자 기반의 단열재는 건물, 자동차, 항공우주 분야에 활용될 수 있습니다. 2. 탄소 나노튜브 : 탄소 나노튜브는 단열에 대한 큰 잠재력을 보여주는 또 다른 유형의 나노입자입니다. 열전도율이 뛰어나 효율적인 단열재로 사용할 수 있습니다. 탄소나노...
더 읽어보기
-
SEM 나노 분말 샘플을 준비하려면 일반적으로 다음 단계가 필요합니다. 샘플 준비 첫째, 적절한 시료 준비 방법을 선택하는 것이 필요합니다. 일반적으로 물리적 방법, 화학적 방법, 생물학적 방법, 기계적 방법 등이 있으며 그 중 가장 일반적인 방법으로는 마그네트론 스퍼터링, 화학적 환원, 에어로졸 등이 있습니다. 시료 분산 나노분말 시료를 고르게 분산시키는 것도 매우 중요합니다. 초음파나 교반 등의 방법을 사용하여 시료를 용매나 기타 물질에 균일하게 분산시킬 수 있습니다. 샘플 준비 실제 필요에 따라 샘플을 얇은 필름, 얇은 필름 또는 기타 형태로 준비할 수 있습니다. 샘플은 일반적으로 원심분리기와 같은 장비를 사용하여 준비할 수 있습니다. 입자 크기 테스트 입자 크기는 투과전자현미경이나 X선 회절과 같은 ...
더 읽어보기
-
운송 중 분말의 유동성을 개선하는 방법에는 여러 가지가 있습니다. 분말의 입자 모양은 분쇄 또는 분무 건조 공정 중 작동 조건을 변경하여 유동성에 영향을 줌으로써 제어할 수 있습니다. 분말에 실리카 , 알루미나 등의 입상물질 등 유동성 첨가제를 첨가하여 유동성을 향상시킬 수 있습니다. 흐름이 어려운 분말의 경우, 이송 파이프라인, 버킷 피더, 진동 피더에 진동 장치를 추가하거나 특정 온도를 유지하기 위해 히터를 사용하는 등 진동, 가열 또는 공기 흐름을 사용하여 흐름을 촉진할 수 있습니다. 분체를 운반하는 과정에서 겹겹이 쌓이면 분체의 유동성에 영향을 줄 수 있으므로 피해야 합니다. 경사면을 설치하거나 운송 파이프라인을 늘리는 등의 방법으로 쌓이는 것을 방지할 수 있습니다....
더 읽어보기
-
초미세분말 의 표면코팅처리는 분체의 흐름성을 향상시키고 분진비산을 감소시키며 안정성과 내습성을 향상시키며 분체의 용해성을 향상시킬 수 있는 매우 유용한 기술입니다. 일반적으로 사용되는 초미립자 표면 코팅 처리 방법은 다음과 같습니다. 습식 표면처리 : 분말에 코팅물질을 액상으로 첨가하고 건조시켜 얇은 막을 형성하는 방식입니다. 코팅제로는 폴리머, 전분, 폴리아크릴산, 스테아르산 등을 사용할 수 있습니다. 건식표면처리 : 기계식 건조기에서 분체와 도료를 별도로 혼합한 후, 공기의 흐름을 통해 도료가 분체의 표면에 부착되어 얇은 막을 형성하게 됩니다. 코팅제는 규산, 실리카, 탄산칼슘, 활석분말 등이 될 수 있다. 이온교환 : 계면활성제나 이온교환수지 등의 물질을 이용하여 이온밀도가 높은 액체를 고체로 제조하고...
더 읽어보기
-
SiCp/Al 복합재료로 약칭되는 탄화규소 입자 강화 알루미늄 매트릭스 복합재료는 알루미늄 매트릭스 합금에 탄화규소 입자(SiCp)를 첨가하여 고강도, 고강성 및 고내열성을 갖는 복합재료를 형성하는 것을 의미합니다. 이 복합재료는 내식성, 내마모성이 우수하여 항공우주, 조선, 자동차, 전자기기 등의 분야에서 널리 사용되고 있습니다. 또한 탄화규소 입자를 추가하면 알루미늄 기반 재료의 열전도도가 향상되어 고온 조건에서 응용 분야를 견딜 수 있습니다. 탄화규소 입자 강화 알루미늄 매트릭스 복합재는 고강도, 고강성, 고내열성, 고내식성과 같은 장점을 가지며 항공우주, 자동차 제조, 군사 및 기타 분야에서 일반적으로 사용됩니다. 항공우주 분야에서 탄화규소 입자 강화 알루미늄 매트릭스 복합재는 항공기의 성능, 수명 ...
더 읽어보기
-
초미세 분말은 많은 산업 생산 공정에서 필수적인 원료 중 하나입니다. 기존의 일반 분말에 비해 입자 크기가 더 작고, 표면이 매끄러우며, 가공이 쉽고, 분산이 더 쉬운 장점이 있습니다. 초미립자 분말을 보다 잘 활용하기 위해서는 품질과 성능을 향상시키는 표면 코팅 처리가 필요합니다. 이 기사에서는 초미세 분말의 표면 코팅 처리를 위한 여러 가지 방법을 소개합니다. 방법 1: 물리적 표면 코팅 처리 물리적 방법을 이용한 표면코팅 처리에 일반적으로 사용되는 방법으로는 기계적 합금화, 고에너지 볼밀링, 기상증착, 화학기상증착, 물리증착 등이 있다. 이들 방법 중 특히 물리적 증착법은 가장 일반적으로 사용되는 표면 코팅 처리 방법 중 하나이다. 물리적 증착 방법은 표면에 미크론 및 서브미크론 수준의 결정질 또는 비...
더 읽어보기
-
초미세 나노분말은 현대 과학기술 발전의 중요한 산물로서 전자제품, 생물의학 등 분야에서 널리 활용되고 있습니다. 초미세 나노분말의 입도는 그 성능에 중요한 영향을 미치기 때문에 초미세 나노분말의 입도 검출 기술 개발도 화제가 되고 있다. 사이테는 초미세 나노분말 연구 및 생산 전문 기업으로 초미세 나노분말의 입도 검출 분야에서도 풍부한 경험과 기술 축적을 보유하고 있습니다. 1, 일반적인 검출 방법: 초미세 나노분말의 입자 크기에 대한 일반적인 검출 방법은 동적 광산란(DLS)과 레이저 회절 입자 크기 분석(LPS)입니다. 그 중 DLS 검출의 원리는 산란광 강도의 변화를 이용해 시료의 입자 크기를 반영하는 것이며 검출 범위는 1nm~1μm입니다. 콜로이드 액체 입자 검출에 적합합니다. LPS는 0.04~2...
더 읽어보기