검색

검색

  • 19

    Jan

    어떤 나노물질이 다른 결정 형태를 가지고 있는지

    최근 나노물질의 응용이 주목을 받고 있다. 나노물질은 더 큰 비표면적과 서브마이크론 크기를 갖고 있어 거시적 물질과 다른 화학적, 물리적 특성을 제공합니다. 나노물질의 결정 구조는 그 특성에 중요한 영향을 미칩니다. 다양한 결정 형태를 지닌 나노물질은 각각의 응용 분야에서 특정한 장점을 가지고 있습니다. Dongguan SAT NANO는 수년간의 기술 연구 및 시장 경험을 바탕으로 나노 소재를 제공하는 전문 회사입니다. 우리는 고객의 혁신적인 요구 사항을 충족할 수 있도록 고품질 나노 소재와 다양한 결정 형태를 제공합니다. 다음으로, 몇 가지 일반적인 나노물질과 그들의 다양한 결정 형태를 살펴보겠습니다. 1. 이산화티타늄 나노소재 이산화티타늄은 태양전지, 촉매, 자가세정코팅 등의 분야에 활용될 수 있는 널리...
    더 읽어보기
  • 31

    Jan

    자외선을 차단하기 위해 인쇄 잉크 및 코팅에 어떤 나노 분말을 첨가할 수 있습니까?

    나노 분말은 현대 산업에서 다양한 응용 분야를 가지고 있습니다. 그 중 하나는 UV 저항성을 제공하기 위해 인쇄 잉크 및 코팅에 추가됩니다. 나노분말은 크기가 매우 작고 비표면적이 높기 때문에 극소량으로도 놀라운 효과를 나타낼 수 있습니다. 그렇다면 UV 저항 역할을 하기 위해 인쇄 잉크와 코팅에 어떤 나노 분말을 첨가할 수 있을까요? 이 기사에서는 간단한 소개를 제공합니다. 1, 나노 이산화티타늄 분말 나노 이산화티타늄 분말은 일종의 일반적인 나노 분말로, 자외선에 저항하기 위해 잉크와 코팅에 첨가할 수 있습니다. 내구성과 색상을 향상시키기 위해 실내외 건축자재, 플라스틱, 유색자재 등 다양한 분야에 널리 사용되고 있습니다. 인쇄 잉크 및 코팅에 나노 이산화티타늄 분말을 첨가하면 UV 손상을 방지할 수 있...
    더 읽어보기
  • 22

    Mar

    유전체 재료로 사용되는 나노 재료

    유전체 재료는 전하를 저장할 수 있는 전기 절연 재료입니다. 유전 상수는 유전 물질의 중요한 성능 지표로, 전기장에서 전하 저장 용량에 대한 물질의 반응을 측정하는 데 사용됩니다. 유전율은 비유전율과 절대 유전율의 두 가지 유형으로 나뉘며, 그 중 유전율은 유전 물질 연구에서 일반적으로 사용됩니다. 다음을 포함하여 일반적으로 사용되는 유전체 재료가 많이 있습니다. 1. 산화물: 나노 티탄산 바륨(BaTiO3) , 나노 티타늄 이산화물(TiO2) , 알루미나(Al2O3) 등. 예: 티탄산 바륨(BaTiO3): 티탄산 바륨은 널리 사용되는 고성능 강유전성 세라믹입니다. 세라믹 재료는 재료의 유전 상수를 향상시키기 위해 폴리머 변형에 사용될 수 있습니다. 또한 커패시터, 세라믹 압전 재료, 센서 등의 분야에서도 ...
    더 읽어보기
  • 29

    May

    단조공정에 질화붕소 윤활제 적용

    최근에는 유성윤활유가 수성윤활유로 대체되는 추세입니다. 질화붕소 코팅은 니켈 기반 합금, 고융점 합금 및 티타늄 가공 부품의 단조에 자주 사용되며, 이는 윤활을 제공할 뿐만 아니라 공작물 산화를 방지합니다. 단조윤활유의 특징 1. 국부적인 윤활부족을 방지하기 위해 표면을 균일하게 적셔준다. 2. 단조 금형 깊숙이 축적되어 공작물의 공차 또는 표면 품질에 영향을 미칠 수 있고 장비나 환경에 침전되거나 제거가 어렵기 때문에 잔류물이 없습니다. 3. 금형이 부식되지 않아야 하며 금형에 보호 코팅을 적용해야 합니다. 4. 특정 냉각 효과가 있습니다. 5. 자동 공급에 적합하며 바람직하게는 스프레이 방법에 적합합니다. 6. 환경을 오염시키지 않고 신체에 유해한 물질을 생성하지 않습니다. (사진은 이형코팅을 분사한 효...
    더 읽어보기
  • 16

    Jul

    구리 및 구리합금 분말 제조기술 현황 및 개발 동향

    구리 분말 및 구리합금분말은 높은 전도성, 열전도성, 내식성 등 물리적, 화학적 특성이 우수하여 전력산업, 열관리시스템, 원자력발전소, 항공우주산업 등에 널리 사용됩니다. 고강도, 내마모성, 내식성 구리 합금은 자동차 부품 및 생활 필수품에 사용됩니다. 본 논문에서는 적층 가공(AM)에 사용되는 구리 및 구리 합금 원료 분말의 종류와 제조 방법을 소개하고, 국내외 구리 기반 부품에 대한 AM 기술 현황을 요약합니다. 다양한 AM 방식의 공정 흐름과 장단점을 강조하고 부품 품질에 영향을 미치는 기술적 어려움과 해당 솔루션을 분석했습니다. 구리 기반 부품의 AM 기술 개발 방향도 논의됐다. AM 기술은 부품의 3D 모델에 대한 계층화된 슬라이싱 및 개별 데이터를 기반으로 재료를 층별로 축적하여 부품을 준비하는 ...
    더 읽어보기
  • 05

    Aug

    금홍석 이산화티타늄과 아나타제 이산화티타늄의 차이점은 무엇입니까

    이산화티타늄은 주로 판형 이산화티타늄, 아나타제형 이산화티타늄 , 금홍석형 이산화티타늄 의 세 가지 유형으로 나뉩니다. 금홍석 이산화티탄과 아나타제 이산화티탄은 현재 시장에서 가장 널리 사용되는 이산화티타늄의 두 가지 중요한 유형입니다. 그러나 그 속성은 크게 다릅니다. 화학적 성질의 차이 이산화티타늄은 화학적 성질이 매우 안정적이며 약산성 양쪽성 산화물입니다. 실온에서는 다른 원소 및 화합물과 거의 반응하지 않으며 산소, 암모니아, 질소, 황화수소, 이산화탄소 및 이산화황에 영향을 미치지 않습니다. 물, 지방, 묽은 산, 무기산, 염기에는 녹지 않으며 불화수소산에만 녹는다. 그러나 빛의 작용 하에서 이산화티타늄은 지속적인 산화-환원 반응을 겪을 수 있으며 광화학 활성을 가지고 있습니다. 이러한 광화학적 활...
    더 읽어보기
  • 11

    Nov

    3D 프린팅 재료용 TC4 합금 분말의 제조 방법은 무엇입니까?

    3D 프린팅에는 재료에 따라 다양한 유형이 있는데, 그 중 금속 분말은 3D 프린팅의 주요 원료 중 하나이며 고순도 금속 분말을 원료로 사용해야 합니다. 화학적 조성, 입자 모양, 입자 크기 및 분포, 유동성 등과 같은 분말의 관련 매개변수는 3D 프린팅 품질에 큰 영향을 미칩니다. 독특한 특성을 지닌 티타늄 및 티타늄 합금 소재는 3D 프린팅 금속 소재의 요구 사항을 충족하는 분말로 제조할 수 있지만 제조 난이도도 높습니다. 현재 3D 프린팅된 티타늄 합금 분말을 제조하기 위한 주요 성숙 기술로는 플라즈마 회전 전극법, 플라즈마 와이어 재료 및 가스 원자화 방법이 있습니다. 티타늄 합금 분말을 3D 프린팅하여 생산한 제품은 경도가 높고 열팽창 계수가 낮으며 내식성이 우수한 장점이 있습니다. 티타늄 합금분말...
    더 읽어보기
  • 12

    Nov

    3D 프린팅 소재용 TC4 티타늄 합금 분말의 특성 분석

    TC4 티타늄 합금의 조성은 Ti-6AI-4V로 (a+β)형 티타늄 합금에 속합니다. 그것은 우수한 종합 기계적 특성, 높은 비강도, 우수한 내식성, 우수한 생체 적합성을 가지며 항공 우주, 석유 화학, 생물 의학 및 기타 분야에서 널리 사용됩니다. 이 기사에서는 티타늄 합금 분말을 제조하기 위해 플라즈마 회전 전극 방법을 선택하고 티타늄 합금 분말의 구형화 메커니즘에 대해 논의합니다. 미세 구조의 진화 법칙을 탐구하고 주요 열처리 방법을 논의하여 3D 프린팅 기술에 TC4 티타늄 합금을 적용하는 데 필요한 이론적 기초를 제공합니다. 2.1 실험 재료 및 방법: 플라즈마 회전 전극 원자화 방법으로 TC4 합금 분말을 제조하고, 그 화학적 조성을 아래와 같은 장비로 분석했습니다. 알 철 다섯 기음 N 시 영형...
    더 읽어보기
  • 09

    Dec

    플라즈마 회전 전극 미립화법으로 제조된 NiTi 합금분말의 특성

    최근에는 3D 프린팅 기술의 급속한 발전으로 NiTi 합금분말이 생체의료용 임플란트의 핵심원료로 많은 주목을 받고 있습니다. 3D 프린팅의 기초로서 분말원료의 품질이 중요하며, 플라즈마 회전전극 미립화 방식이 많은 주목을 받고 있다. 플라즈마 회전전극의 제조방법 PREP 방법은 NiTi 합금 분말을 제조하는 데 사용되며 장비는 주로 회전 공급 메커니즘, 분무 챔버, 플라즈마 건 장치 및 공급 메커니즘을 포함합니다. NiTi 합금봉을 원료로 사용하여 전극봉으로 만들고 플라즈마 건 아크에 의해 발생되는 고온에서 녹입니다. 전극봉 자체의 고속 회전에 의해 발생하는 원심력을 이용하여 녹은 금속이 순간적으로 분출되어 냉매 속에서 구형 분말로 급속히 응고됩니다. 준비과정에서 보호가스로 순도 4N(99.99%)의 고순도...
    더 읽어보기
  • 04

    Mar

    산화철 Fe3O4 나노 파더를 분산시키는 방법

    회사의 나노 산화철 분말을 구매 한 후 고객은 테스트 중에 입자 크기가 더 크다는 것을 발견했습니다 그 이유는 무엇입니까? 나노 분말의 입자 크기는 매우 미세하기 때문에 응집하기 쉽기 때문에 시험 된 큰 입자 크기는 응집 후 입자 크기입니다 그래서 우리는 어떻게 효과적으로 할 수 있습니까? 나노 산화철 분말 분산? 다음으로, 우리는 산화철을 분산시키기 위해 초음파 파를 사용하는 방법을 소개합니다 (Fe3O4) 분말, 단계는 다음과 같습니다.1 재료와 장비를 준비하십시오-Nano Fe3O4 분말-분산 매체 : 예 : 물, 에탄올 등-Dispersants : SDS, CTAB 등과 같은 (선택 사항)-ultrasonic 청소 기계 또는 초음파 프로브2 서스펜션을 준비하십시오-NANO Fe3O4 분말은 분산 배지...
    더 읽어보기
  • 07

    Mar

    이산화통 VO2 분말과 그 적용은 무엇입니까?

    속성 이산화통:이산화 바이나듐의 분자식은이다 VO2, 분자량은 82 94입니다 단일 클리닉 결정 구조를 가진 진한 청색 결정 분말입니다 물에 불용성, 산과 알칼리에 쉽게 용해됩니다 산에 용해 될 때, 그것은 사막 이온을 생성 할 수 없지만 양성의 이온 산화 바나듐 이온을 생성한다 건조한 수소 흐름에서 적색 열로 가열되면 트라이 옥스 바나듐으로 감소되며 공기 또는 질산에 의해 산화되어 바나듐에 바르 나나 디에 용해되어 바나 데이트를 형성 할 수 있습니다 그것은 탄소, 일산화탄소 또는 옥살산으로 바나듐 펜 독 사이드를 감소시킴으로써 생산 될 수있다 유리 및 도자기의 채색 제로 사용됩니다 이산화 바이나듐은 위상 전이 특성을 갖는 금속 산화물이며, 위상 전이 온도는 68 ● 위상 전이 전후의 구조적 변화는 전송에서...
    더 읽어보기
  • 11

    Apr

    TEM 분해능에 영향을 미치는 주요 요인은 무엇입니까?

    주요 제한 사항TEM 성능구면 수차(수차라고도 함), 색 수차, 그리고 비점 수차가 있습니다. 구면 수차와 색 수차는 기존 TEM의 분해능을 제한합니다. 이 두 가지 결함은 모두 정적 회전 대칭 전자기장을 사용할 때 불가피합니다. 볼 수차는 대물렌즈의 성능을 결정하는 가장 중요한 요소입니다. 샘플이 두꺼울수록 색상 차이가 더 심해집니다. 이 문제를 줄이려면 샘플을 더 얇게 만드는 것이 가장 좋습니다. 산란은 상의 초점 성능에 영향을 미칠 수 있지만 완전히 보정할 수 있습니다. 구면 수차는 렌즈 필드가 축외 광선에 미치는 불균일한 효과로 인해 발생합니다. 즉, 광축에 "평행"하지만 광축으로부터 거리가 다른 광선은 같은 지점에 모일 수 없습니다. 전자가 광축에서 더 많이 벗어날수록 축 쪽으로 더 강하게 휘어집니...
    더 읽어보기
< 11
[  총  11  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!