금속나노입자는 의학, 전자, 에너지, 환경 등 다양한 분야에 응용이 가능한 널리 사용되는 소재이다. 크기가 매우 작고 표면적이 넓어 많은 재료의 성능을 향상시킬 수 있습니다. 그러나 금속 나노입자의 표면은 매우 활동적이고 주변 환경과 쉽게 반응하는 경우가 많으므로 표면을 보호하기 위한 보호층이 필요합니다. 이 기사에서는 금속 나노입자의 보호층의 역할을 탐구합니다. 보호층은 일반적으로 무기 또는 유기 물질로 구성된 금속 나노입자의 표면을 덮는 얇은 막이다. 이 박막은 금속 나노입자의 표면을 보호하고 주변 환경과 반응하는 것을 방지할 수 있습니다. 특히 촉매반응에서는 금속나노입자의 표면이 반응물과 반응하는 경우가 많으며, 보호층은 이러한 반응이 일어나는 것을 방지하여 반응의 선택성과 효율성을 향상시킬 수 있다....
더 읽어보기
클래스 I 및 클래스 II 재료는 재료 과학 분야의 두 가지 기본 개념으로, 재료의 결정 구조 유형을 설명하는 데 사용되며 반도체 및 금속과 같은 재료 연구에 자주 적용됩니다. 그렇다면 Class I 재료와 Class II 재료를 어떻게 구별합니까? 간단한 방법은 재료의 밀도에 따라 구별하는 것입니다. 유형 2 물질과 비교하여 유형 1 물질은 원자 배열이 더 촘촘하고 구조가 더 촘촘하기 때문에 밀도가 더 높습니다. 물론 이 방법은 동일한 화학 원소를 가진 재료를 비교하는 데에만 적합하며 원소 조성이 다른 재료에는 적용할 수 없습니다. 또 다른 방법은 X선 회절(XRD) 분석을 이용하는 것입니다. XRD는 재료 결정의 회절 패턴을 사용하여 결정 구조 유형을 결정할 수 있는 일반적인 재료 특성화 도구입니다. 실...
더 읽어보기
초미세 탄화규소 분말은 높은 화학적 불활성, 고경도, 고융점 등 우수한 특성을 지닌 우수한 무기재료로 제조업에서 널리 사용되고 있습니다. 그러나 표면 활성이 낮기 때문에 특정 산업 응용 시나리오에서는 우수한 성능을 달성하기가 어렵습니다. 따라서 초미립 탄화규소 분말의 표면 개질 방법에 대한 연구는 매우 중요하다. 이 기사에서는 초미세 탄화규소 분말의 두 가지 표면 개질 방법을 소개하고 개질된 분말을 테스트하고 특성화합니다. 첫째, 고분자 전해질을 통한 개질 방법이 소개된다. 이 방법은 양이온 고분자 전해질 폴리디메틸암모늄 클로라이드(PDADMAC) 또는 음이온 고분자 전해질 나트륨 폴리스티렌 설포네이트(PSS)를 사용하여 초미세 탄화규소 분말을 개질합니다. 구체적인 공정은 탈이온수에서 SiC 분말과 함께 P...
더 읽어보기
최근에는 유성윤활유가 수성윤활유로 대체되는 추세입니다. 질화붕소 코팅은 니켈 기반 합금, 고융점 합금 및 티타늄 가공 부품의 단조에 자주 사용되며, 이는 윤활을 제공할 뿐만 아니라 공작물 산화를 방지합니다. 단조윤활유의 특징 1. 국부적인 윤활부족을 방지하기 위해 표면을 균일하게 적셔준다. 2. 단조 금형 깊숙이 축적되어 공작물의 공차 또는 표면 품질에 영향을 미칠 수 있고 장비나 환경에 침전되거나 제거가 어렵기 때문에 잔류물이 없습니다. 3. 금형이 부식되지 않아야 하며 금형에 보호 코팅을 적용해야 합니다. 4. 특정 냉각 효과가 있습니다. 5. 자동 공급에 적합하며 바람직하게는 스프레이 방법에 적합합니다. 6. 환경을 오염시키지 않고 신체에 유해한 물질을 생성하지 않습니다. (사진은 이형코팅을 분사한 효...
더 읽어보기
탄화붕소 분말이란 무엇입니까? 나노 탄화붕소 및 초미세 탄화붕소 분말은 가변 전류 레이저 이온 기상 방법으로 제조되었습니다. 블랙 다이아몬드라고도 알려진 탄화붕소는 B4C의 분자식을 가지며 일반적으로 회색 검정색 미세 분말입니다. 이는 알려진 세 가지 가장 단단한 물질 중 하나입니다(나머지 두 개는 다이아몬드와 입방정 질화붕소). 단단한 검정색 광택 크리스탈. 경도는 공업용 다이아몬드보다 낮지만 탄화규소보다는 높습니다. 대부분의 도자기에 비해 취약성이 낮습니다. 열중성자 포획 단면적이 넓습니다. 강한 내화학성. 불화수소 및 질산에 의한 부식에 취약하지 않습니다. 용융된 알칼리에는 용해되지만 물과 산에는 용해되지 않습니다. 탄화붕소 분말의 응용은 무엇인가요 이 제품은 고순도, 작은 입자 크기, 균일한 분포, ...
더 읽어보기