13929258449

admin@satnano.com

검색

검색

  • 04

    Aug

    Nano ATO Antimony Tin Oxide 분말은 단열재에 사용할 수 있습니다.

    건물 에너지 절약에서 유리의 광 투과 및 단열은 매우 중요한 문제입니다. 천장이 투명하고 외창이 넓은 건물의 경우 태양열 복사로 인해 에어컨의 에너지 소비가 증가하여 막대한 에너지 낭비가 발생합니다. 이러한 현상을 개선하기 위해 나노크기의 안티몬이 도핑된 산화주석 ATO 가 등장하였다. Nano ATO(Antimony Doped Tin Oxide) 는 ATO 재료와 나노 재료의 장점을 결합한 일종의 n형 반도체 재료로 새로운 유형의 다기능 투명 전도성 재료입니다. 첫째, ATO 필름은 가시광선 영역에서 높은 광 투과율을 가질 뿐만 아니라 준금속 특성과 함께 우수한 전기 전도성을 나타내며 우수한 전기적 특성은 SnO2를 반도체로 만드는 Sb2O3의 도핑에 기인합니다. 둘째, ATO 필름은 우수한 반사 방지, ...
    더 읽어보기
  • 01

    Jul

    Fisher 입자 크기와 레이저 입자 크기의 차이 및 입자 크기 테스트에서 샘플 분산 방법 공유

    Fisher의 방법은 분말 축적을 통과하는 공기의 속도를 측정한 다음 Kozeny-Carman 공식에 따라 분말의 평균 입자 크기를 구하는 비교적 간단한 입자 크기 측정 방법입니다. 그러나 Fisher법은 상대적인 측정법으로 분말의 실제 입도를 정확히 결정할 수 없으며 공정 및 제품의 품질을 관리하기 위해서만 사용된다. Fisher의 방법은 비교적 규칙적인 분말에 대한 현미경 측정 결과와 일치합니다. Fisher 입자 에 의해 측정된 평균 입자 크기 Dsv 크기 분석기는 레이저 입자 크기 측정으로 계산된 D(3,2)와 유사합니다. 그러나 실제로 Fisher 입도분석기를 측정하여 레이저 입도 는 입도분포를 기준으로 하고 D(3,2)는 입자의 구형에 따라 계산한다. 즉, 시험할 입자가 구형에 가까울수록 그 차이...
    더 읽어보기
  • 28

    Jul

    붕사-염화암모늄법은 질화붕소 합성에 일반적으로 사용되는 방법입니다.

    이것은 질화붕소 를 합성하는 방법이다 암모니아 분위기에서 붕사와 염화암모늄을 주원료로 반응시켜 두 원료는 반응에 참여하기 전에 별도로 탈수 및 재결정화되어야 합니다. 붕사는 200~400°C의 진공 상태에서 가장 잘 탈수됩니다. 염화암모늄의 재결정화는 포화용액에 녹이고 여과하여 불순물을 제거한 후 재결정하는 것이다. 순도 요구 사항에 따라 여러 번 반복할 수 있습니다. 파쇄 및 건조된 붕사는 염화암모늄과 7:3의 질량비로 혼합되어 압축 연탄으로 제조되고 반응로에 보내져 합성된다. 반응 속도를 높이고 전환율을 향상시키기 위해서는 반응물이 스스로 형성하는 암모니아 분위기의 부족을 보충하기 위해 암모니아(NH3)를 도입해야 합니다. 저온에서, 암모니아의 공급량은 고온 단계에서보다 적습니다. 암모니아의 특정 공급량...
    더 읽어보기
  • 28

    Jul

    붕소 무수물 방법은 질화 붕소 합성에 일반적으로 사용되는 방법입니다.

    질화붕소 합성 무수붕소(B4O3)로 질화하는 것은 질화붕소의 산업적 생산을 위한 중요한 방법 중 하나입니다. 붕소 무수물의 낮은 융점으로 인해 (유리 상태는 294 ° C, 결정 상태는 450-600 ° C) 질화 온도에서 고점도 용융물이되어 암모니아의 흐름을 방해하고 반응을 느리게 만듭니다. 그리고 극도로 불완전하다. 이러한 단점을 극복하기 위해 고융점 물질을 충전제로 사용하여 무수붕소 용융물의 점도를 낮출 수 있습니다. 충전제 자체는 반응에 참여하지 않으며 마지막에 쉽게 제거할 수 있습니다. 일반적으로 사용되는 충전재로는 산화마그네슘(MgO), 탄산칼슘(CaCO3), 인산삼칼슘[Ca3(PO4)2], 질화붕소(BN) 등이 있습니다. 그 중 인산삼칼슘이 가장 좋으며, 붕산 무수물과 인산삼칼슘을 5:3의 질량...
    더 읽어보기
  • 28

    Jul

    세슘 텅스텐 산화물 나노 입자 변성 PVC 필름의 단열 및 적외선 차단 특성을 제조하고 테스트하는 방법

    여름에는 태양이 강하고 햇빛이 유리를 통해 실내로 들어와 차 내부의 온도가 급격히 상승하여 생활 및 차량 탑승의 편안함에 심각한 영향을 미칩니다. 그 중 적외선 대역의 에너지가 가장 큰 비중을 차지하며, 태양광이 조사되는 장소의 온도 상승의 주요 에너지원이기도 합니다. 유리 필름 방식으로 적외선을 차단하고 높은 가시광선 투과율을 유지함으로써 실내 및 차량 온도의 급격한 상승을 방지하고 사람들에게 편안한 생활, 작업 및 승차 환경을 제공합니다. 세슘 텅스텐 산화물 나노 입자 는 운송 차량에 사용됩니다. 그리고 건물 에너지 절약은 좋은 응용 전망을 가지고 있습니다. 세슘 텅스텐 청동 나노 입자의 분산은 최종 제품의 성능에 직접적인 영향을 미칩니다. 저자는 볼밀로 세슘 텅스텐 청동 분말을 분산시키는 방법을 탐구하...
    더 읽어보기
  • 28

    Jul

    세슘 텅스텐 청동 나노 입자로 스마트 단열의 시대가 도래했습니다.

    유리 단열 코팅은 하나 이상의 나노 분말 재료로 준비된 코팅의 일종입니다. 사용된 나노 물질은 특수한 광학적 특성을 가지고 있어 적외선 영역과 자외선 영역에서 차단율이 높다. , 가시 영역에서 높은 투과율을 가지고 있습니다. 소재의 투명하고 단열적인 특성을 이용하여 친환경 고성능 수지와 혼합하고 특수 가공기술을 통해 가공하여 에너지 절약형 친환경 단열 코팅제를 제조합니다. 유리 조명에 영향을 미치지 않는다는 전제하에 여름에는 에너지 절약 및 냉각 효과를 얻을 수 있으며 겨울에는 에너지 절약 및 보온 효과를 얻을 수 있습니다. 최근 몇 년 동안 새로운 환경 친화적인 단열재를 탐색하는 것은 항상 연구자들이 추구하는 목표였습니다. 이러한 재료는 가시광선 투과율이 높고 근적외선을 효과적으로 흡수하거나 반사할 수 있...
    더 읽어보기
  • 02

    Aug

    세슘 도핑된 텅스텐 산화물 CSxWO3 유리와 일반 유리의 단열 테스트 비교

    적외선은 명백한 열 효과가 있어 주변 온도를 쉽게 높일 수 있습니다. 일반 건축 유리는 단열 효과가 없으며 필름을 통해서만 얻을 수 있습니다. 따라서 건축 유리, 자동차 필름, 옥외 시설 및 기타 표면은 단열 및 에너지 절약 효과를 달성하기 위해 단열재를 사용해야 합니다. 최근 몇 년 동안 산화텅스텐은 우수한 광전자 특성으로 인해 널리 주목받고 있으며, 세슘 원소가 도핑된 산화텅스텐 분말은 적외선 영역에서 강한 흡수 특성을 가지면서 동시에 가시광선의 투과율이 높다. 근적외선 흡수율이 가장 우수한 무기 나노분말, 나노세슘텅스텐청동 은 근적외선 영역(파장 800-1100nm)에서 강한 흡수 특성을 가질 뿐만 아니라 가시광선 영역(파장 380-780nm)과 자외선 영역(파장 200-380nm) 또한 강력한 차폐 ...
    더 읽어보기
  • 11

    Aug

    보호를 위한 금속 알루미늄 나노 입자의 패시베이션 층

    분말 저장, 운송 및 사용 과정에서 나노 알루미늄 분말 은 활성이 낮고 외부 환경 요인(온도, 습도 등)의 영향을 덜 받아 제품에 대해 안정적인 성능을 갖기를 희망하는 경우가 많습니다. 장기. 한편, 높은 에너지 방출율과 우수한 연소 효율을 얻기 위해서는 고체 로켓 추진체 에서 높은 활성을 나타내는 것이 바람직하다. 따라서 나노알루미늄 분말의 활성 조절 및 항산화 특성에 대한 연구는 복잡하고 근본적인 문제이다. 나노금속분말 을 생산하는 과정에서 , Hongwu Nano는 입자 표면에 패시베이션 층/산화막을 만듭니다. 이러한 산화피막의 존재로 나노금속입자를 보호할 수 있고 안정성이 향상된다. 패시베이션층이란? 패시베이션 층은 패시베이션된 부분입니다. 패시베이션은 금속 표면을 쉽게 산화되지 않는 상태로 전환시켜...
    더 읽어보기
  • 01

    Sep

    나노 붕소 카바이드 분말의 일반적인 응용 분야는 무엇입니까

    블랙 다이아몬드라고도 알려진 탄화 붕소 는 화학식 B4C 의 무기 물질 이며 일반적으로 회색-검정색 미세 분말입니다. 이것은 다이아몬드와 입방정 질화붕소 다음으로 가장 단단한 것으로 알려진 세 가지 재료 중 하나이며 탱크 갑옷, 방탄복 및 많은 산업 응용 분야에 사용됩니다. 모스 경도는 약 9.5입니다. 검은 광택 크리스탈. 경도는 산업용 다이아몬드보다 낮지만 탄화규소보다는 높습니다. Nano-Boron Carbide(공급량 100-200nm)의 적용 1. 핵분열 제어 Boron Carbide (공급량 100-200nm)는 방사성 동위원소를 형성하지 않고 많은 수의 중성자를 흡수할 수 있으므로 원자력 발전소에서 이상적인 중성자 흡수체이며, 중성자 흡수체는 주로 핵 분열 속도를 제어합니다. 탄화 붕소는 주로 ...
    더 읽어보기
  • 31

    Aug

    나노 탄화 붕소 분말의 생산 방법은 무엇입니까

    블랙 다이아몬드라고도 알려진 탄화 붕소 는 화학식 B4C 의 무기 물질 이며 일반적으로 회색-검정색 미세 분말입니다. 이것은 다이아몬드와 입방정 질화붕소 다음으로 가장 단단한 것으로 알려진 세 가지 재료 중 하나이며 탱크 갑옷, 방탄복 및 많은 산업 응용 분야에 사용됩니다. 나노 붕소 카바이드의 여러 제조 방법(공급 100-200nm): 1. 탄소 열 환원 방법 저밀도, 고강도, 고온 안정성 및 우수한 화학적 안정성으로 인해. 내마모성 재료, 세라믹 강화 단계, 특히 경량 갑옷, 원자로 중성자 흡수기 등에 사용됩니다. 또한 다이아몬드 및 입방정 질화붕소에 비해 탄화붕소는 제조하기 쉽고 비용이 저렴하므로 더 널리 쓰이는. 일부 장소에서는 값비싼 다이아몬드를 대체할 수 있으며 연삭, 연삭, 드릴링 및 기타 응용...
    더 읽어보기
  • 05

    Sep

    나노 탄화규소 분말의 용도는 무엇입니까

    1 변형된 고강도 신소재 나노 SiC 분말 입자 고분자 복합 재료의 상용성이 우수하고 분산 및 기본 결합이 우수하며 변형 된 고강도 나일론 합금의 인장 강도가 일반 PA6보다 100 % 이상 높고 내마모성이 2.5 배 이상 향상됩니다. 유저들의 반응이 좋았다. 주로 장갑차의 폴리머 부품, 자동차 조타 부품, 섬유 기계, 광산 기계 라이닝 플레이트, 기차 부품 등에 사용됩니다. 낮은 온도에서 소결하여 치밀화할 수 있습니다. 커플링제로 표면처리한 나노탄화규소는 첨가량이 약 10%일 때 PEEK의 내마모성을 크게 향상시킬 수 있다. (마이크론 크기의 탄화규소로 충전된 PEEK의 마모 모드는 주로 배 절단 및 연마 마모, 일정량의 나노 탄화규소 를 첨가하면 개질 처리를 위한 원래 고무 공식을 변경하지 않고 원래 성...
    더 읽어보기
  • 09

    Sep

    나노 삼산화 텅스텐 분말의 적용은 무엇입니까

    나노 WO3 는 비표면적이 크고 표면 효과가 크며 주촉매와 조촉매로 모두 사용할 수 있고 반응에 대한 선택성이 높은 우수한 촉매이다. WO3는 전자파를 흡수하는 능력이 강하여 우수한 태양에너지 흡수재료 및 열성재료로 사용될 수 있다. WO3는 n형 반도체 재료로 NOx, H2S, NH, H2, O3 등과 같은 다양한 가스에 대한 민감도와 가스 민감도가 우수하여 가스 센서 및 가스 변색 소자 제작에 사용할 수 있습니다. 또한, 삼산화텅스텐의 밴드갭 에너지는 약 2.5 eV이며, 파장 < 500 nm의 가시광선에서 잠재적인 광촉매 능력을 가지고 있습니다. 따라서 WO3는 유기 염료로 오염된 물의 처리에 잠재적인 응용 가능성이 있습니다. 가스 감지 분야의 응용 산업 및 농업 현대화가 발전함에 따라 석탄, 석...
    더 읽어보기
< 11 12 13 14 15 16 17 18 19 >
[  총  19  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!