그래핀 양자점이란? 그래핀은 광범위한 응용 가능성을 가지고 있지만, 밴드갭이 없고, 물 속에서 분산이 낮으며, 분광 흡수도가 낮기 때문에 광전자, 생물 이미징, 반도체 등 여러 분야에 적용하기 어렵습니다. 따라서 그래핀 양자점(GQD)을 제조하는 것은 그래핀의 밴드갭을 조절하고 나노소자에 적용하는 효과적인 방법입니다. 그래핀 플레이크의 측면 크기가 나노 크기로 감소하면 그래핀 양자점(GQD)이 되는데, 이는 5층 이하의 그래핀 플레이크로 구성된 영차원(0D) 물질입니다. 대부분의 그래핀 양자점은 원형이나 타원형이지만, 삼각형이나 육각형의 점들도 있습니다. 그래핀 양자점 (GQD) 대 그래핀 이자형 양자 구속 효과로 인해 GQD에서 에너지 밴드가 크기에 따라 열리는 것은 GQD와 그래핀 사이의 명확한 경계를 ...
더 읽어보기
이산화티타늄 높은 화학적 안정성, 무독성, 그리고 우수한 광전 성능을 특징으로 하며, 특히 루틸형 이산화티타늄은 높은 표면 활성을 가지고 있어 배터리 소재 개질에 매우 적합합니다. 폴리에틸렌 글리콜과 마찬가지로, 이산화티타늄의 도입은 리튬 철 인산철 자체의 부족한 에너지 밀도와 속도 특성을 보완하기 위한 것입니다. 리튬 철 인산염에 이산화 티타늄을 첨가하는 세 가지 주요 방법은 다음과 같습니다. 1. 도핑 변형. 나노 크기의 이산화티타늄 입자를 리튬 철 인산염 격자에 도입함으로써 이종 구조를 형성하여 재료의 전도도를 크게 향상시킬 수 있습니다. 실험 결과, 1%의 이산화티타늄을 도핑하면 리튬 철 인산염의 전자 전도도가 두 자릿수(zero) 증가하고 속도 성능이 15%에서 30% 향상되는 것으로 나타났습니다....
더 읽어보기