13929258449

admin@satnano.com

검색

검색

  • 28

    Jul

    세슘 텅스텐 산화물 나노 입자 변성 PVC 필름의 단열 및 적외선 차단 특성을 제조하고 테스트하는 방법

    여름에는 태양이 강하고 햇빛이 유리를 통해 실내로 들어와 차 내부의 온도가 급격히 상승하여 생활 및 차량 탑승의 편안함에 심각한 영향을 미칩니다. 그 중 적외선 대역의 에너지가 가장 큰 비중을 차지하며, 태양광이 조사되는 장소의 온도 상승의 주요 에너지원이기도 합니다. 유리 필름 방식으로 적외선을 차단하고 높은 가시광선 투과율을 유지함으로써 실내 및 차량 온도의 급격한 상승을 방지하고 사람들에게 편안한 생활, 작업 및 승차 환경을 제공합니다. 세슘 텅스텐 산화물 나노 입자 는 운송 차량에 사용됩니다. 그리고 건물 에너지 절약은 좋은 응용 전망을 가지고 있습니다. 세슘 텅스텐 청동 나노 입자의 분산은 최종 제품의 성능에 직접적인 영향을 미칩니다. 저자는 볼밀로 세슘 텅스텐 청동 분말을 분산시키는 방법을 탐구하...
    더 읽어보기
  • 04

    Aug

    투명 단열 코팅에 사용되는 4가지 일반적인 나노 물질

    나노 단열 코팅 은 햇빛으로부터 자외선을 흡수하는 데 사용할 수 있으며 현재의 장식용 건물에 자주 사용됩니다. 수성 나노 투명 단열 코팅은 고효율 및 에너지 절약 효과가있을뿐만 아니라 녹색 환경 보호, 건강 및 안전의 포괄적 인 이점이 있습니다. 솔벤트 기반 유리 나노 투명 단열 코팅의 대안 제품으로 시장 전망이 넓고 국가에서 주장하는 에너지 절약 및 배출 감소에도 적합합니다. , 환경 보호에는 심오한 실용적인 중요성과 긍정적인 사회적 중요성 이 있습니다. 나노 투명 단열 코팅 의 단열 메커니즘 : 태양 복사 에너지는 주로 0.2~2.5μm의 파장 범위에 집중되어 있습니다. 특정 에너지 분포는 다음과 같습니다. 자외선 영역은 0.2~0.4μm이며 전체 에너지의 5%를 차지합니다. 가시광선 영역은 0.4~0....
    더 읽어보기
  • 02

    Aug

    세슘 도핑된 텅스텐 산화물 CSxWO3 유리와 일반 유리의 단열 테스트 비교

    적외선은 명백한 열 효과가 있어 주변 온도를 쉽게 높일 수 있습니다. 일반 건축 유리는 단열 효과가 없으며 필름을 통해서만 얻을 수 있습니다. 따라서 건축 유리, 자동차 필름, 옥외 시설 및 기타 표면은 단열 및 에너지 절약 효과를 달성하기 위해 단열재를 사용해야 합니다. 최근 몇 년 동안 산화텅스텐은 우수한 광전자 특성으로 인해 널리 주목받고 있으며, 세슘 원소가 도핑된 산화텅스텐 분말은 적외선 영역에서 강한 흡수 특성을 가지면서 동시에 가시광선의 투과율이 높다. 근적외선 흡수율이 가장 우수한 무기 나노분말, 나노세슘텅스텐청동 은 근적외선 영역(파장 800-1100nm)에서 강한 흡수 특성을 가질 뿐만 아니라 가시광선 영역(파장 380-780nm)과 자외선 영역(파장 200-380nm) 또한 강력한 차폐 ...
    더 읽어보기
  • 11

    Aug

    보호를 위한 금속 알루미늄 나노 입자의 패시베이션 층

    분말 저장, 운송 및 사용 과정에서 나노 알루미늄 분말 은 활성이 낮고 외부 환경 요인(온도, 습도 등)의 영향을 덜 받아 제품에 대해 안정적인 성능을 갖기를 희망하는 경우가 많습니다. 장기. 한편, 높은 에너지 방출율과 우수한 연소 효율을 얻기 위해서는 고체 로켓 추진체 에서 높은 활성을 나타내는 것이 바람직하다. 따라서 나노알루미늄 분말의 활성 조절 및 항산화 특성에 대한 연구는 복잡하고 근본적인 문제이다. 나노금속분말 을 생산하는 과정에서 , Hongwu Nano는 입자 표면에 패시베이션 층/산화막을 만듭니다. 이러한 산화피막의 존재로 나노금속입자를 보호할 수 있고 안정성이 향상된다. 패시베이션층이란? 패시베이션 층은 패시베이션된 부분입니다. 패시베이션은 금속 표면을 쉽게 산화되지 않는 상태로 전환시켜...
    더 읽어보기
  • 09

    Sep

    고무 산업에서 나노 아연 산화물의 응용은 중요한 역할을 했습니다.

    나노 산화아연 은 ​​우수한 가황 활성제입니다. 나노 산화아연은 ​​분자 수준에서 고무 분자와 결합할 수 있으므로 고무 화합물의 성능을 향상시키고 완제품의 특성을 향상시킬 수 있습니다. 래디얼 타이어 및 기타 고무 제품을 예로 들어 보겠습니다. 나노 아연 산화물의 사용은 열전도율, 내마모성, 인열 저항, 인장 강도 및 기타 제품 지표를 크게 향상시킬 수 있으며 복용량을 35 ~ 50 % 절약 할 수있어 제품 비용을 크게 절감 할 수 있습니다. 고무 화합물의 스코치 시간을 연장하는 것은 가공 기술에 유리합니다. 나노 산화 아연은 고무 신발, 장화, 고무 장갑 및 기타 노동 보호 제품에 사용되어 제품의 수명을 연장하고 외관과 색상을 향상시킬 수 있습니다. 투명 또는 유색 고무 제품에 사용되며 카본 블랙과 같은 ...
    더 읽어보기
  • 09

    Sep

    나노 지르코니아 분말을 단열재로 사용할 수 있습니다.

    나노 지르코니아 는 국방, 전자, 고온 구조 및 기능 세라믹, 특히 표면 코팅과 같은 하이테크 분야에서 중요한 응용 가치를 가지고 있습니다. 나노 지르코니아 고유의 낮은 열전도율은 단열 효과를 향상시키는 단열 코팅에 탁월한 소재입니다. 높은 내식성, 높은 경도 및 높은 내마모성은 코팅 개질에도 좋은 재료입니다. 나노 지르코니아는 특별한 광학적 특성을 가지며 자외선 장파, 중파 및 적외선에 대한 반사율이 85%에 달합니다. 코팅이 건조 된 후, 나노 입자는 코팅 사이의 틈을 단단히 채워 완전한 공기 절연 층을 형성하고 자체의 낮은 열전도율로 인해 코팅의 열 전달 시간이 길어질 수 있으므로 코팅도 더 낮습니다. 열 전도성. 코팅의 열전도율을 향상시켜 코팅의 단열 성능을 향상시킬 수 있습니다. 도료에 ​​적용되는...
    더 읽어보기
  • 09

    Sep

    플라스틱에 나노 실리카 분말의 응용 프로그램은 무엇입니까?

    플라스틱 응용 분야는 실리카 의 고강도, 고유동성 및 소형 효과를 이용하여 플라스틱 제품의 조밀함, 평활도 및 내마모성을 향상시킬 수 있습니다. 적절한 표면 개질을 통해 플라스틱 강화 및 강화 목적을 동시에 달성할 수 있습니다. 폴리에틸렌에 흄드 실리카를 첨가함으로써 특수한 방법을 통해 기지에 실리카를 균일하게 분산시킬 수 있고, 내마모성과 경도가 높은 폴리에틸렌 복합재료를 얻을 수 있다. 흄드 실리카의 표면은 그라프팅 중합에 의해 개질되며, 고분자 고분자 사슬은 나노 입자를 효과적으로 차단하고 응집 정도를 줄이는 데 사용됩니다. 그런 다음 폴리 프로필렌이 채워집니다. 기상 나노 SiO2 /PP 합성물. 낮은 첨가 수준에서 폴리프로필렌의 인성은 약 2배 증가할 수 있습니다. 복합재 시스템에 적절한 양의 엘라...
    더 읽어보기
  • 16

    Sep

    페인트 마모 및 경화에 나노 알루미나의 적용은 무엇입니까?

    나노 알루미나 는 높은 경도, 고강도, 우수한 열안정성, 내마모성, 열전도성, 절연성 및 기타 우수한 특성으로 인해 코팅 분야에서 널리 사용되었습니다. 코팅에 나노 알루미나 분말과 나노 알루미나 분산액을 추가하면 코팅의 내마모성이 향상되고 일정한 자체 수리 능력이 있으며 동시에 코팅의 경도가 증가합니다. 1-2% 나노 알루미나를 함유한 페인트는 내스크래치성, 내산성 및 알칼리성 및 기타 특성을 향상시킬 수 있습니다. 나노 알루미나를 첨가하여 제조된 코팅은 코팅의 경도, 내스크래치성 및 내마모성을 크게 향상시킬 수 있으며 이는 기존 코팅보다 2-4배 더 높습니다. 나노 알루미나를 첨가하면 경화 중 코팅의 부피 수축을 줄이고 코팅과 기판 사이의 접착력을 향상시킬 수 있습니다. 1. 내마모성 에폭시 수지에 나노알...
    더 읽어보기
  • 16

    Sep

    섬유 분야에서 나노 이산화티타늄의 응용은 무엇입니까

    나노 TiO2 의 극도로 강한 표면 활성으로 인해 , 큰 크기의 덩어리를 형성하기 쉽기 때문에 실제 적용에 영향을 미칩니다. 따라서 TiO2의 광촉매 분해 효율을 향상시키고 TiO2의 유전상수와 표면 활성을 변화시키는 측면에서 수정될 수 있다. 계면 활성제를 TiO2와 결합하는 두 가지 방법이 있습니다. 하나는 물리적 흡착입니다. 계면활성제의 친수성 극성기가 TiO2의 표면과 결합하면 친유성 비극성기가 외부 유기물과 결합할 수 있습니다. , 유기물이 더 큰 크기의 덩어리에 들어가도록 하여 TiO2를 분산시킵니다. 다른 하나는 화학적 흡착으로 계면 활성제가 TiO2 표면의 수산기와 결합하여 TiO2와 유기물의 친화력을 높입니다. 부틸 티타네이트와 에탄올을 티타늄 공급원으로 사용하여 나노-TiO2 마감제를 졸-...
    더 읽어보기
  • 16

    Sep

    섬유 항균제에 나노 아연 산화물의 응용은 무엇입니까

    나노 징크옥사이드 는 1nm~100nm 사이의 입자 크기를 갖는 미세한 무기 물질입니다. 산화아연은 ​​일반적으로 4개의 산소 원자가 아연 이온을 둘러싸고 있는 wurtzite 형태로 존재하여 열역학적으로 안정적인 사면체 구조를 형성합니다. 나노-아연 산화물의 결정 구조 및 표면 전자 구조의 변화로 인해 나노-아연 산화물은 표면 효과, 부피 효과, 양자 크기 효과 및 거시적 양자 터널링 효과의 특성을 가지며 다른 역학, 광학 및 자기를 갖는다. 일반 산화아연. 화학적, 열적, 촉매적 성능 및 생물학적 활성의 특성. 첫 번째. 섬유 항균제에 나노산화아연의 응용 나노산화아연은 ​​항균성이 우수하고 환경 친화적입니다. 좋은 항균성을 얻기 위해 직물에 적용할 수 있습니다. 현재 나노-산화아연을 사용하여 항균성 섬유...
    더 읽어보기
  • 21

    Sep

    분산제 분산 나노 입자의 기본 원리는 무엇입니까

    안정적인 분산 시스템 의 형성은 정전기적 반발력 즉, 입자 표면에 흡착된 음전하가 서로 반발하여 입자 간의 흡착/응집을 방지하여 최종적으로 큰 입자를 형성하고 성층화/침강되는 것을 방지하고, 그러나 또한 사용합니다. 음전하를 흡착한 입자가 서로 접근함에 따라 서로 미끄러지는 입체 장애 효과 이론. 이러한 입체 장애 계면활성제는 일반적으로 비이온성 계면활성제이다. 정전기 반발 및 입체 장애 이론을 유연하게 사용하여 매우 안정적인 분산 시스템을 형성할 수 있습니다. 폴리머 흡착층은 특정 두께를 가지고 있어 주로 폴리머의 용매화층에 의존하여 입자의 상호 흡착을 효과적으로 차단할 수 있습니다. 분산제의 메커니즘: 1. 고체 입자의 표면에 흡착되어 액체-액체 또는 고체-액체 사이의 계면 장력을 감소시킵니다. 응집된 ...
    더 읽어보기
  • 28

    Feb

    투명한 수성 나노 아조 대전방지 코팅제 제조방법

    고분자 필름 재료는 가공성 및 전기 절연성이 우수하여 산업 생산 및 일상 생활의 다양한 분야에서 널리 사용됩니다. 그러나 표면 저항이 높기 때문에 사용 중에 정전기가 축적되기 쉽습니다. 정전기가 어느 정도 축적되면 정전기 진공, 감전은 물론 화재 및 폭발과 같은 부정적인 결과를 초래하여 상당한 손실을 초래합니다. 이 문제를 해결하는 효과적인 방법 중 하나는 전도성 코팅을 사용하여 고분자 재료 표면에 전도성을 부여하는 것입니다. 전도성 고분자 복합재료 중요한 이론적 연구 가치와 광범위한 응용 전망을 가진 새로운 기능 재료 유형입니다. 전도성 고분자 재료는 높은 전도성, 반도체 특성, 정전 용량, 전기 화학적 활성을 가지며 일련의 광학 특성을 가지고 있습니다. 일반 폴리머와는 다른 특성을 가지고 있습니다. 현재...
    더 읽어보기
< 1 2 3 4 5 6 7 8 9 >
[  총  9  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!