-
과학 기술의 급속한 발전 상황에서 고온, 고성능, 새로운 유형의 재료를 준비하려면 가장 먼저해야 할 일은 준비 과정에서 필요한 내화 재료를 해결하는 것입니다. 내화 재료의 특성은 다음과 같습니다. 1. 기계적 성질 특수 내화 재료의 탄성 계수는 큽니다. 대부분 기계적 강도가 높지만 금속재에 비해 취성으로 인해 내충격성이 매우 낮습니다. 대부분의 특수 내화 재료는 경도가 높기 때문에 마모, 기류 또는 먼지 침식에 대한 저항성이 우수합니다. 대부분의 특수 내화 재료는 비교적 작은 고온 크리프를 갖는 이규화 몰리브덴입니다. 크리프 값의 크기는 결정 크기, 결정립계 물질, 다공성 등과 관련이 있습니다. 2. 열적 특성 (1) 열팽창: 열팽창은 재료의 선형성 및 체적 온도의 가역적 증가 및 감소를 나타냅니다. 종...
더 읽어보기
-
의 1차 입자 크기 매개변수 나노 구리 산화물 :20nm, 50nm, 100나노미터, 순도 99% 최소. 나노 구리 산화물의 응용: 1. 나노 구리 산화물은 중요한 다기능 무기 재료, 인쇄 및 염색, 세라믹, 유리 및 의약 및 기타 분야에서 널리 사용되는. 2. 나노 구리 산화물은 로켓 추진제의 연소 속도 촉매로도 사용할 수 있습니다. 추진제의 연소 속도를 크게 높이고 압력 지수를 낮출 수 있을 뿐만 아니라, 우수한 촉매 효과를 가질 수 있습니다. AP 합성 추진제. 3. 나노 구리 산화물은 작은 입자 크기, 큰 비표면적 및 높은 촉매 활성,의 특성을 가지므로 전기, 자기, 촉매, 등에서 특이한 특성을 나타냅니다. 4] 초전도 재료, 열전 재료 및 감지 재료. 응용 가능성이 높습니다.. 4. 산화구리는 적색...
더 읽어보기
-
나노물질은 전통적인 물질이 가지고 있지 않은 많은 이국적인 특성을 나타냅니다. 우리가 가장 먼저 알아야 할 것은 나노미터(주로 100nm 미만을 나타냄) 구성의 나노미터가 4가지 주요 효과를 갖는다는 것입니다. 1. 작은 사이즈 효과 결정 주기성의 경계 조건이 파괴됩니다. 비정질 나노입자의 표면층 근처의 원자 밀도가 감소,하여 소리, 빛, 전기, 자기, 및 열. 특성의 변화 입자 크기의 양적 변화, 특정 조건에서 입자 특성의 정성적 변화. 입자 크기 감소로 인한 거시적 물리적 특성의 변화를 나노 입자의 작은 크기 효과.라고 합니다, 크기가 작아지고, 비표면적도 크게 증가하여, 자기 특성, 내부 압력, 광 흡수, 열 저항, 화학 활성, 촉매 및 융점 일반 입자와 비교하여 큰 변화를 겪었으며, 시리즈의 새로운 ...
더 읽어보기
-
나노 물질의 가치는 정보 산업, 생물 의학, 항공 우주 및 환경 보호, 등.,에서의 우수한 성능뿐만 아니라 삶의 세부 사항까지 깊숙이 들어갈 수 있다는 점,에 있습니다. 3 그리고 전통적인 제조,의 변형을 통해 인간의 의복, 식품, 주택 및 운송. 자재는 모든 기술 발전.에 대한 물질적 기초입니다. 최종 재료, 나노 재료의 출현은 그 자체로 재료 분야의 주요 개혁. 국가 정책 지원, 나노 재료는 필연적으로 재료 산업의 미래 발전을 위한 중요한 연구 방향이 될 것입니다. 최근 몇 년 동안, 고분자 재료. 나노복합체. 매크로 또는 마이크로 규모 고분자 재료, 기계적 특성, 차단성, 난연성, 열적 특성, 나노복합체. 3 전기적 특성 및 생물학적 특성 l 물성이 크게 향상되었으며, 성능까지도 새로운 성능. 나노 물...
더 읽어보기
-
슈퍼커패시터는 대용량의 장점으로 인해 시동 전원, 펄스 전원 공급, 군사, 이동 통신 장치, 컴퓨터 및 전기 자동차에 널리 사용되는 새로운 유형의 에너지 저장 요소,입니다. , 대전류의 빠른 충방전,과 긴 사이클 수명. 및 다른 에너지 저장 메커니즘,에 따른 기타 연구 분야. 슈퍼커패시터는 다음 세 가지 유형으로 나눌 수 있습니다. 레이어 커패시터, 패러데이 의사 커패시터 및 하이브리드 슈퍼 커패시터. 전기 이중층 커패시터는 주로 전극/전해질 사이의 계면에 형성된 전기 이중층을 통해 에너지를 저장하며, 이러한 커패시터는 높은 전력 밀도와 우수한 사이클 성능을 갖는다. 패러데이 유사 축전기는 주로 전극 표면 또는 벌크 상의 2차원 공간에서 빠르고 가역적인 화학적 흡착/탈착 또는 산화환원 반응을 통해 에너지를 ...
더 읽어보기
-
이산화망간 (화학식: mno2 )은 흑색 또는 갈색 고체, 망간 중 가장 안정한 산화물,이며 화철석과 망간 단괴.에서 종종 발견됩니다. 유문은 망간을 함유한 주요 광물입니다. 망간 결절(해저 암석 고체)에는 망간.도 포함되어 있습니다. 이산화망간은 탄소-아연 배터리 및 알카라인 배터리와 같은 건전지,를 만드는 데 주로 사용됩니다. 또한 산소를 만드는 것과 같은 화학 반응,에서 촉매로 자주 사용됩니다. 또는 산성 용액에서 강력한 산화제로. 유기 합성에서 시약(산화제)으로 사용할 수도 있습니다, 예를 들어, 알릴 알코올의 산화를 위해. 이산화망간도 안료로 사용됩니다 과망간산칼륨(kmno4).과 같은 다른 망간 화합물의 전구체로서 알파 다형체의 이산화망간은 "터널" 또는 "채널"...
더 읽어보기
-
1.물리적 성질 외관 및 특성: 흑색 또는 흑색 갈색 결정성 또는 무정형 분말 상대 분자량: 86.94 화학식: mno2 융점(℃): 535(분해) 상대 밀도(물u003d1) 5.03 끓는점(°C): 535°c 용해도: 물에 불용성, 질산에 불용성 보관: 밀폐되고 서늘한 곳에 보관 2.화학적 성질 이산화망간 는 팔면체 모서리의 상단에 있는 산소 원자,이고 팔면체.의 망간 원자 [mno2 팔면체는 단일 또는 이중 사슬을 형성하도록 연결되어 있습니다. 표면 몸체는 육각형으로 밀집되어 있습니다. 또는 입방밀폐. 산화: 이산화망간은 염을 형성하지 않는 산화물, 비 양쪽성 산화물(산이나 알칼리와 반응하지 않음): 환원제.를 만나면 산화됩니다. , 이산화망간을 수소 기류에서 1400K로 가열하여 산화망간을 얻는 단계;...
더 읽어보기
-
이산화망간 , "과산화망간", "검정 산화망간",이라고도 하는 , 흑색 사방정계 결정 또는 갈색 흑색 분말,이며 많은 변형이 있습니다.. 물에 불용성, 질산, 찬 황산 및 아세트산, 차갑고 진한 염산에 용해되어 불안정한 연갈색-녹색 mncl4,을 생성하며 가열되고 진한 염산과 반응하여 염소를 방출합니다. 기체. 진한 황산과 반응하여 천천히 산소를 방출, 공기 중에서 600℃로 가열하면 H2O2 또는 H2C2O4. 존재하에서 묽은 황산 또는 질산에 용해될 수 있음, 방출 산소와 mn2o3,으로 변환되고 백색열일 때, mn3o4.로 변환하는 강력한 산화제이며 유기 물질 또는 황,과 같은 기타 산화성 물질,과 함께 가열하거나 문지르지 못합니다. 3 황화물, 인화물, 등. 자연계...
더 읽어보기
-
특성화 및 테스트 기술은 나노물질을 과학적으로 식별하는 기본적인 방법입니다, 다양한 구조를 이해하고, 고유한 특성을 평가합니다. 나노물질 특성화의 주요 목적은 나노물질의 물리적 및 화학적 특성을 결정하는 것입니다, 형태, 크기, 입자 크기, 화학 조성, 결정 구조, 밴드 갭 및 광 흡수 특성. 나노 분말의 조성 특성은 일반적으로 다음과 같은 방법을 사용합니다. 1. 원자 흡수 분광법(aas) 샘플에서 테스트된 요소의 함량은 증기상에서 테스트된 요소의 바닥 상태 원자에 의한 원자 공명 복사의 흡수 강도에 따라 결정됩니다.. 검출 한계가 낮은 나노 물질의 미량 금속 불순물 정량 측정에 적합합니다. 측정 정확도가 매우 높습니다. 선택이 양호하고, 분리 감지가 필요하지 않습니다.. 광범위한 분석 요소를 사용할 수 ...
더 읽어보기
-
특성화 및 테스트 기술은 나노물질을 과학적으로 식별하는 기본적인 방법입니다, 다양한 구조를 이해하고, 고유한 특성을 평가합니다. 나노물질 특성화의 주요 목적은 나노물질의 물리적 및 화학적 특성을 결정하는 것입니다, 형태, 크기, 입자 크기, 화학 조성, 결정 구조, 밴드 갭 및 광 흡수 특성. 등 나노 물질의 상 구조와 결정 구조는 현재 물질의 성능에 중요한 역할을 한다., 현재, 구조 분석 방법 나노 분말 일반적으로 다음과 같이 사용됩니다. 1. X선 회절 분석 xrd는 x-ray diffraction,의 약자로, x-ray diffraction,의 연구 방법인 x-ray diffraction,은 물질의 조성, 원자의 구조나 형태와 같은 정보를 얻기 위한 연구 방법입니다. x-ray 회절로 물질의 회절 패...
더 읽어보기
-
플라스틱 응용 분야는 실리카 의 고강도, 고유동성 및 소형 효과를 이용하여 플라스틱 제품의 조밀함, 평활도 및 내마모성을 향상시킬 수 있습니다. 적절한 표면 개질을 통해 플라스틱 강화 및 강화 목적을 동시에 달성할 수 있습니다. 폴리에틸렌에 흄드 실리카를 첨가함으로써 특수한 방법을 통해 기지에 실리카를 균일하게 분산시킬 수 있고, 내마모성과 경도가 높은 폴리에틸렌 복합재료를 얻을 수 있다. 흄드 실리카의 표면은 그라프팅 중합에 의해 개질되며, 고분자 고분자 사슬은 나노 입자를 효과적으로 차단하고 응집 정도를 줄이는 데 사용됩니다. 그런 다음 폴리 프로필렌이 채워집니다. 기상 나노 SiO2 /PP 합성물. 낮은 첨가 수준에서 폴리프로필렌의 인성은 약 2배 증가할 수 있습니다. 복합재 시스템에 적절한 양의 엘라...
더 읽어보기
-
나노 TiO2 의 극도로 강한 표면 활성으로 인해 , 큰 크기의 덩어리를 형성하기 쉽기 때문에 실제 적용에 영향을 미칩니다. 따라서 TiO2의 광촉매 분해 효율을 향상시키고 TiO2의 유전상수와 표면 활성을 변화시키는 측면에서 수정될 수 있다. 계면 활성제를 TiO2와 결합하는 두 가지 방법이 있습니다. 하나는 물리적 흡착입니다. 계면활성제의 친수성 극성기가 TiO2의 표면과 결합하면 친유성 비극성기가 외부 유기물과 결합할 수 있습니다. , 유기물이 더 큰 크기의 덩어리에 들어가도록 하여 TiO2를 분산시킵니다. 다른 하나는 화학적 흡착으로 계면 활성제가 TiO2 표면의 수산기와 결합하여 TiO2와 유기물의 친화력을 높입니다. 부틸 티타네이트와 에탄올을 티타늄 공급원으로 사용하여 나노-TiO2 마감제를 졸-...
더 읽어보기