-
(1) 입자 크기 특성화 입자는 액체에 분산되어 현탁 시스템을 형성합니다. 입자 크기가 작을수록 시간이 지남에 따라 안정성이 높아질수록 분산력이 좋아지고 뭉칠 가능성이 줄어듭니다. 입자 크기 특성화는 일반적으로 표면 개질 전후의 입자 분산을 특성화하는 데 사용됩니다. 입자의 분산이 좋을수록 입자 크기 분포는 단분산 입자에 더 가까워집니다. 반대로, 입자 분산이 불량할수록 입자 크기 분포는 단분산 입자에서 거친 입자로 이동하는 경향이 있습니다. (2) 전자현미경 특성화 주사전자현미경은 액체계에서 입자의 존재상태를 특성화하는 가장 직관적인 방법이다. 입자를 액상에 분산시킨 후 적당량의 현탁액을 취하여 주사전자현미경 스테이지에 떨어뜨린다. 건조 후 전자현미경으로 관찰하고 사진을 찍어 분산성을 비교한다. (3) 제...
더 읽어보기
-
이산화티타늄은 주로 판형 이산화티타늄, 아나타제형 이산화티타늄 , 금홍석형 이산화티타늄 의 세 가지 유형으로 나뉩니다. 금홍석 이산화티탄과 아나타제 이산화티탄은 현재 시장에서 가장 널리 사용되는 이산화티타늄의 두 가지 중요한 유형입니다. 그러나 그 속성은 크게 다릅니다. 화학적 성질의 차이 이산화티타늄은 화학적 성질이 매우 안정적이며 약산성 양쪽성 산화물입니다. 실온에서는 다른 원소 및 화합물과 거의 반응하지 않으며 산소, 암모니아, 질소, 황화수소, 이산화탄소 및 이산화황에 영향을 미치지 않습니다. 물, 지방, 묽은 산, 무기산, 염기에는 녹지 않으며 불화수소산에만 녹는다. 그러나 빛의 작용 하에서 이산화티타늄은 지속적인 산화-환원 반응을 겪을 수 있으며 광화학 활성을 가지고 있습니다. 이러한 광화학적 활...
더 읽어보기
-
재료의 소결은 몸체의 치밀화와 몸체 내 입자의 성장이라는 적어도 두 가지 과정을 포함합니다. 곡물의 수명은 일반적으로 곡물 경계의 이동을 통해 달성됩니다. 입자 성장 동역학의 고전 이론에 따르면 곡선형 입자 경계의 두 측면 사이의 자유 에너지 차이는 인터페이스가 곡률 중심을 향해 이동하도록 하는 원동력입니다. 공백에서는 대부분의 결정립계가 곡선입니다. 각 입자의 중심에서 일부 입자 경계는 오목하고 다른 입자 경계는 볼록합니다. 볼록한 표면의 계면 에너지는 오목한 표면의 계면 에너지보다 크므로 원자 또는 이온이 볼록한 표면에서 오목한 표면으로 전이되어 입자 경계가 볼록한 표면의 곡률 중심을 향해 이동하게 됩니다. 결과적으로 오목한 결정립 경계를 가진 일부 결정립은 성장하는 반면, 볼록한 결정립 경계를 가진 다...
더 읽어보기
-
회사의 나노 산화철 분말을 구매 한 후 고객은 테스트 중에 입자 크기가 더 크다는 것을 발견했습니다 그 이유는 무엇입니까? 나노 분말의 입자 크기는 매우 미세하기 때문에 응집하기 쉽기 때문에 시험 된 큰 입자 크기는 응집 후 입자 크기입니다 그래서 우리는 어떻게 효과적으로 할 수 있습니까? 나노 산화철 분말 분산? 다음으로, 우리는 산화철을 분산시키기 위해 초음파 파를 사용하는 방법을 소개합니다 (Fe3O4) 분말, 단계는 다음과 같습니다.1 재료와 장비를 준비하십시오-Nano Fe3O4 분말-분산 매체 : 예 : 물, 에탄올 등-Dispersants : SDS, CTAB 등과 같은 (선택 사항)-ultrasonic 청소 기계 또는 초음파 프로브2 서스펜션을 준비하십시오-NANO Fe3O4 분말은 분산 배지...
더 읽어보기
-
속성 이산화통:이산화 바이나듐의 분자식은이다 VO2, 분자량은 82 94입니다 단일 클리닉 결정 구조를 가진 진한 청색 결정 분말입니다 물에 불용성, 산과 알칼리에 쉽게 용해됩니다 산에 용해 될 때, 그것은 사막 이온을 생성 할 수 없지만 양성의 이온 산화 바나듐 이온을 생성한다 건조한 수소 흐름에서 적색 열로 가열되면 트라이 옥스 바나듐으로 감소되며 공기 또는 질산에 의해 산화되어 바나듐에 바르 나나 디에 용해되어 바나 데이트를 형성 할 수 있습니다 그것은 탄소, 일산화탄소 또는 옥살산으로 바나듐 펜 독 사이드를 감소시킴으로써 생산 될 수있다 유리 및 도자기의 채색 제로 사용됩니다 이산화 바이나듐은 위상 전이 특성을 갖는 금속 산화물이며, 위상 전이 온도는 68 ● 위상 전이 전후의 구조적 변화는 전송에서...
더 읽어보기
-
실리콘 파우더 (마이크론 및 나노미터 규모 포함) 높은 화학적 활성, 넓은 비표면적, 그리고 반도체 특성으로 인해 다양한 분야에서 광범위하게 활용됩니다. 예를 들면 다음과 같습니다. 1. 전자 및 반도체 산업 집적회로 및 칩:고순도 실리콘 분말(99.999% 이상)은 단결정 실리콘과 다결정 실리콘을 제조하는 원료로, 반도체 소자, CPU, GPU 및 기타 칩에 사용됩니다. 태양광 산업: 태양 전지의 실리콘 웨이퍼는 실리콘 분말(CVD법으로 성장시킨 실리콘 잉곳을 슬라이스하는 것과 같은)로부터 가공됩니다. 전자 포장재:나노 실리콘 분말은 전도성 접착제 및 열 충진재로 사용되어 전자 부품의 방열 및 전도성을 향상시킵니다. 2. 새로운 에너지와 배터리 리튬이온전지 음극재료:나노실리콘 분말은 기존 흑연 음극을 대체...
더 읽어보기
-
이산화티타늄 높은 화학적 안정성, 무독성, 그리고 우수한 광전 성능을 특징으로 하며, 특히 루틸형 이산화티타늄은 높은 표면 활성을 가지고 있어 배터리 소재 개질에 매우 적합합니다. 폴리에틸렌 글리콜과 마찬가지로, 이산화티타늄의 도입은 리튬 철 인산철 자체의 부족한 에너지 밀도와 속도 특성을 보완하기 위한 것입니다. 리튬 철 인산염에 이산화 티타늄을 첨가하는 세 가지 주요 방법은 다음과 같습니다. 1. 도핑 변형. 나노 크기의 이산화티타늄 입자를 리튬 철 인산염 격자에 도입함으로써 이종 구조를 형성하여 재료의 전도도를 크게 향상시킬 수 있습니다. 실험 결과, 1%의 이산화티타늄을 도핑하면 리튬 철 인산염의 전자 전도도가 두 자릿수(zero) 증가하고 속도 성능이 15%에서 30% 향상되는 것으로 나타났습니다....
더 읽어보기
-
변성처리, 결정립 미세화, 1차상 미세화 또는 형태변화 등의 의미는 서로 다르며, 이러한 내용을 요약하여 변성처리라는 용어를 사용하기도 한다. (1) 열화처리. 간단한 이진법의 경우 Al Si 합금 , 11%~13% Si를 함유하는 Z102와 같은, 그것은 전형적인 공정 합금입니다.그 조직은 거친 바늘 모양(겹쳐져야 함) 실리콘과 알파(Al) 고용체의 공정, 그리고 소량의 블록 모양의 1차 실리콘(합금 조성이 상한선에 치우쳐 있음)으로 구성됩니다.합금의 기계적 성질은 높지 않으며, 인장 강도는 140MPa를 초과하지 않고 신장률은 3% 미만입니다.변성 처리를 위해 주입하기 전에 Na 또는 NaF를 함유하는 개질제(2-3%)를 용융물에 첨가하면 공정점이 오른쪽으로 이동하고 공정 온도가 변성 처리 후 낮아져 원...
더 읽어보기
-
하지만 구형 실리콘 미세 분말 구형이고 유동성이 우수하지만, 유기 매트릭스 재료와 혼합하여 무기 필러로 사용할 경우 상용성이 낮고 분산이 어려운 문제가 여전히 존재합니다. 따라서 이러한 문제를 해결하기 위해 표면 개질이 필수적입니다. 구형 실리콘 미세분말의 표면 개질 표면 개질은 분말 표면에 특정 작용기 또는 코팅을 도입하여 표면 특성을 변화시키고, 수지, 고무, 플라스틱과 같은 매트릭스 재료에서의 분산성과 유동성을 향상시키며, 매트릭스 재료와의 상용성을 향상시켜 궁극적으로 복합 재료의 성능을 향상시키는 것을 의미합니다. 동시에, 표면 개질은 구형 실리콘 미세 분말 표면에 특정 기능을 가진 작용기를 도입하여 새로운 물리적, 화학적, 기계적 특성을 생성하고 특정 응용 분야에서 구형 실리콘 미세 분말의 기능을 ...
더 읽어보기
-
전송 중 전자 현미경(TEM) 분석 합리적으로 해석 가능한 고품질 이미지를 얻는 데 가장 중요하고 기본적인 단계는 샘플 준비입니다. 부적절한 샘플 두께, 낮은 전도도, 또는 샘플 준비 중 발생한 손상은 비정상적인 전자빔 투과, 이미지 왜곡, 심지어 샘플 폐기로 이어질 수 있습니다. TEM 샘플 요구 사항 ① 시료는 일반적으로 두께가 100nm 이하인 고체이어야 합니다. ② 전자현미경 전자기장의 작용으로 샘플이 빨려나와 폴슈에 부착되지 않습니다. ③ 시료는 고진공에서 안정성을 유지할 수 있습니다. ④ 시료에 수분이나 기타 휘발성 물질이 포함되어 있지 않은 경우, 먼저 건조해야 합니다. TEM 샘플 준비 방법 재료 연구에 사용되는 TEM 시편에는 대략 4가지 유형이 있습니다. 1. 분말 입자 2. 세라믹, 금속...
더 읽어보기