-
나노 분말은 현대 산업에서 다양한 응용 분야를 가지고 있습니다. 그 중 하나는 UV 저항성을 제공하기 위해 인쇄 잉크 및 코팅에 추가됩니다. 나노분말은 크기가 매우 작고 비표면적이 높기 때문에 극소량으로도 놀라운 효과를 나타낼 수 있습니다. 그렇다면 UV 저항 역할을 하기 위해 인쇄 잉크와 코팅에 어떤 나노 분말을 첨가할 수 있을까요? 이 기사에서는 간단한 소개를 제공합니다. 1, 나노 이산화티타늄 분말 나노 이산화티타늄 분말은 일종의 일반적인 나노 분말로, 자외선에 저항하기 위해 잉크와 코팅에 첨가할 수 있습니다. 내구성과 색상을 향상시키기 위해 실내외 건축자재, 플라스틱, 유색자재 등 다양한 분야에 널리 사용되고 있습니다. 인쇄 잉크 및 코팅에 나노 이산화티타늄 분말을 첨가하면 UV 손상을 방지할 수 있...
더 읽어보기
-
알루미나 분말 의 표면 개질 방법은 무엇입니까 ? 일반적인 재료인 산화알루미늄은 세라믹, 코팅, 촉매 등의 생산에 흔히 사용됩니다. 그러나 복합 재료 충전이나 고성능 촉매 제조와 같은 일부 응용 분야에서는 성능 향상을 위해 알루미나의 표면 개질이 필요합니다. 그리고 안정성. 이 기사에서는 알루미나의 표면 개질 방법에 대해 설명합니다. 표면 개질은 특정 물질(개질제)을 다른 물질(개질되는 물질)의 표면에 도입하여 재료의 특성과 기능을 향상시키는 과정입니다. 알루미나의 표면 개질 공정에는 화학적 처리, 증착 등의 방법이 일반적으로 사용되며, 그 중 실란 커플링제(KH-560)에 의한 알루미나의 개질이 가장 일반적이다. 실란 커플링제(KH-560)는 우수한 표면 친화성과 반응성을 지닌 다목적 유기 규소 화합물입니...
더 읽어보기
-
최근에는 유성윤활유가 수성윤활유로 대체되는 추세입니다. 질화붕소 코팅은 니켈 기반 합금, 고융점 합금 및 티타늄 가공 부품의 단조에 자주 사용되며, 이는 윤활을 제공할 뿐만 아니라 공작물 산화를 방지합니다. 단조윤활유의 특징 1. 국부적인 윤활부족을 방지하기 위해 표면을 균일하게 적셔준다. 2. 단조 금형 깊숙이 축적되어 공작물의 공차 또는 표면 품질에 영향을 미칠 수 있고 장비나 환경에 침전되거나 제거가 어렵기 때문에 잔류물이 없습니다. 3. 금형이 부식되지 않아야 하며 금형에 보호 코팅을 적용해야 합니다. 4. 특정 냉각 효과가 있습니다. 5. 자동 공급에 적합하며 바람직하게는 스프레이 방법에 적합합니다. 6. 환경을 오염시키지 않고 신체에 유해한 물질을 생성하지 않습니다. (사진은 이형코팅을 분사한 효...
더 읽어보기
-
동박적층판에서는 구형 실리콘 미세분말의 유동성이 우수하여 동박적층판의 수지 매트릭스에 높은 충진을 달성할 수 있어 생산원가, 기본열팽창계수, 유전율을 더욱 절감할 수 있습니다. . 고주파 동박적층판에 가장 일반적으로 사용되는 시스템 중 하나는 높은 충진량을 필요로 하는 PTFE 수지입니다. 그러나 충진량이 증가할수록 시스템의 점도가 급격하게 증가하고, 재료의 유동성과 투과성이 저하됩니다. 구형 실리콘 미세 분말은 수지에 분산되기 어렵고 응집 문제가 발생하기 쉽습니다. 위와 같은 문제를 해결하기 위해서는 일반적으로 구형 실리콘 미분말의 표면 처리가 필요합니다. 표면 처리 변형에 의한, 구형 실리콘 미세 분말 간의 상호 작용을 줄여 응집을 효과적으로 방지하고 전체 시스템의 점도를 낮추며 시스템의 유동성을 향상시...
더 읽어보기
-
하지만 구형 실리콘 미세 분말 구형이고 유동성이 우수하지만, 유기 매트릭스 재료와 혼합하여 무기 필러로 사용할 경우 상용성이 낮고 분산이 어려운 문제가 여전히 존재합니다. 따라서 이러한 문제를 해결하기 위해 표면 개질이 필수적입니다. 구형 실리콘 미세분말의 표면 개질 표면 개질은 분말 표면에 특정 작용기 또는 코팅을 도입하여 표면 특성을 변화시키고, 수지, 고무, 플라스틱과 같은 매트릭스 재료에서의 분산성과 유동성을 향상시키며, 매트릭스 재료와의 상용성을 향상시켜 궁극적으로 복합 재료의 성능을 향상시키는 것을 의미합니다. 동시에, 표면 개질은 구형 실리콘 미세 분말 표면에 특정 기능을 가진 작용기를 도입하여 새로운 물리적, 화학적, 기계적 특성을 생성하고 특정 응용 분야에서 구형 실리콘 미세 분말의 기능을 ...
더 읽어보기
-
X선 회절(XRD)은 상을 분석하는 중요한 방법입니다. 엄밀히 말하면, 특정 상의 존재 여부만 판별할 수 있고 부재 여부는 판별할 수 없기 때문에, X선 회절 분석의 진위 여부를 구별하는 데 더 용이합니다. 그렇다면 검출 한계는 얼마일까요? 첫째로, 우리는 다음 사항을 강조해야 합니다. XRD 분석 원소 함량 측정은 매우 부정확합니다. 검출 한계가 주로 무엇에 의해 결정되는지를 굳이 말하자면, 기기의 출력과 관전류에 의해 결정됩니다. 원소 함량을 정확하게 분석하려면 화학적 방법이나 원자 흡수 분광법을 사용하는 것이 가장 좋습니다. 또한, XRD의 검출 한계는 단순히 %로 표현할 수 없는데, 이는 검출 대상 물질의 분산도, 즉 결정성 및 물질의 종류와 밀접한 관련이 있기 때문입니다. 시료의 질량 흡수 계수가 ...
더 읽어보기
-
높은 열전도성 소재에 대한 수요가 증가함에 따라, 충전재가 포함된 열전도성 고분자 복합재료는 밝은 응용 전망을 갖고 있습니다. 열전도성 복합재료의 성능은 열전도성 충전재의 선택에 크게 좌우됩니다. 산화알루미늄(Al2O3) 고경도 및 우수한 열전도율을 지닌 일반적인 세라믹 충전재로, 재료의 열전도율을 향상시키는 데 널리 사용됩니다. 1. 독보적인 장점: 구형 구조는 독보적인 장점을 제공합니다. 뛰어난 열전도율. 알류미늄 산화물 이 소재는 열전도율이 뛰어난 무기 비금속 소재이며, 구형 구조로 인해 열전도 경로가 더욱 최적화됩니다. 복합재료에서 구형 입자는 더욱 연속적이고 매끄러운 열전도 네트워크를 형성하여 열 저항을 감소시킵니다. 재료 내부에서 열이 전달될 때, 구형 입자 사이의 접촉 면적이 상대적으로 넓고 고...
더 읽어보기
-
분말 표면 개질은 물리적 또는 화학적 방법을 통해 입자의 표면 상태를 변화시키는 것으로, 핵심은 입자 간의 응집력을 약화시키는 것입니다. 분말 입자 크기가 마이크로미터 또는 나노미터 수준으로 감소하면 표면 에너지가 급격히 증가하고, 반 데르 발스 힘, 수소 결합 및 기타 중력으로 인해 입자들이 자발적으로 응집되어 2차 입자를 형성하고 표면적 효과와 부피 효과를 잃게 됩니다. 초미세 분말 표면 개질은 세 가지 핵심 차원에서 분산성을 향상시킵니다. 첫째, 결합제를 사용하여 "분자 가교"를 형성하고 입자 표면 에너지를 감소시킵니다. 둘째, 코팅층을 통해 공간적 장애를 생성하여 입자 간 접촉을 방지합니다. 셋째, 표면 전하를 조절하고 정전기적 반발력을 증가시켜 궁극적으로 매질 내에서 입자의 균일한 분산을 달성합니다...
더 읽어보기