검색

검색

  • 09

    Apr

    XRD(X선 회절) 피크가 이동하는 이유는 무엇입니까?

    피크 이동의 이유XRD(X선 회절) 일반적으로 샘플 자체의 속성 변화나 실험 조건의 영향을 수반하며, 이는 다음과 같은 측면에서 분석할 수 있습니다.1. 표본 요인1.1 잔류응력 또는 격자변형 잔류응력: 재료 내부의 잔류응력(압축응력이나 인장응력과 같은)은 격자상수를 변화시켜 결정립간격(dd값)을 변화시킬 수 있습니다.압축 응력 â†' 면간 간격 감소 â†' 피크 위치가 더 높은 각도로 이동합니다(2θ 증가).인장 응력 â†' 면간 간격 증가 â†' 피크 위치가 낮은 각도로 이동(2 θ 감소).미세한 변형: 나노소재나 비정질 소재의 국소적 격자 변형으로 인해 피크가 이동하거나 넓어질 수 있습니다. 1.2 조성 변화 고용체 형성: 도핑, 합금화 또는 이온 치환(예: Co²⁻⁻가 Fe²⁻⁻를 대체)은 격자 ...
    더 읽어보기
  • 16

    Apr

    TiC 함량이 AlCoCrFeNi 고엔트로피 합금 클래딩층의 미세구조 및 내마모성에 미치는 영향

    고엔트로피 합금(HEA)은 거의 동일한 원자비로 5개 이상의 원소로 구성된 새로운 유형의 구조 재료로, 높은 엔트로피 효과, 격자 왜곡 효과, 느린 확산 효과, 칵테일 효과와 같은 특성을 나타냅니다. 레이저 클래딩 기술은 높은 가열 온도와 빠른 냉각 속도로 인해 HEA 클래딩층의 경도, 내마모성, 내부식성을 크게 향상시킬 수 있습니다. 본 논문에서는 레이저 클래딩의 효과를 조사합니다.안면 경련그리고 모에게AlCoCrFeNi클래딩 층의 미세 구조와 기계적 특성에 대한 고엔트로피 합금. 본 논문에서는 TiC 함량이 AlCoCrFeNi 고엔트로피 합금 클래딩층의 미세조직과 내마모성에 미치는 영향을 조사한다. 레이저 클래딩 기술을 이용하여 40CrNiMo강 표면에 AlCoCrFeNi 2xMo xTiC (x=0, 0...
    더 읽어보기
  • 26

    May

    그래핀 양자점을 만드는 방법

    그래핀 양자점이란? 그래핀은 광범위한 응용 가능성을 가지고 있지만, 밴드갭이 없고, 물 속에서 분산이 낮으며, 분광 흡수도가 낮기 때문에 광전자, 생물 이미징, 반도체 등 여러 분야에 적용하기 어렵습니다. 따라서 그래핀 양자점(GQD)을 제조하는 것은 그래핀의 밴드갭을 조절하고 나노소자에 적용하는 효과적인 방법입니다. 그래핀 플레이크의 측면 크기가 나노 크기로 감소하면 그래핀 양자점(GQD)이 되는데, 이는 5층 이하의 그래핀 플레이크로 구성된 영차원(0D) 물질입니다. 대부분의 그래핀 양자점은 원형이나 타원형이지만, 삼각형이나 육각형의 점들도 있습니다. 그래핀 양자점 (GQD) 대 그래핀 이자형 양자 구속 효과로 인해 GQD에서 에너지 밴드가 크기에 따라 열리는 것은 GQD와 그래핀 사이의 명확한 경계를 ...
    더 읽어보기
  • 30

    May

    실리콘 분말의 생산 방법과 용도는 무엇입니까?

    실리콘 파우더 (마이크론 및 나노미터 규모 포함) 높은 화학적 활성, 넓은 비표면적, 그리고 반도체 특성으로 인해 다양한 분야에서 광범위하게 활용됩니다. 예를 들면 다음과 같습니다. 1. 전자 및 반도체 산업 집적회로 및 칩:고순도 실리콘 분말(99.999% 이상)은 단결정 실리콘과 다결정 실리콘을 제조하는 원료로, 반도체 소자, CPU, GPU 및 기타 칩에 사용됩니다. 태양광 산업: 태양 전지의 실리콘 웨이퍼는 실리콘 분말(CVD법으로 성장시킨 실리콘 잉곳을 슬라이스하는 것과 같은)로부터 가공됩니다. 전자 포장재:나노 실리콘 분말은 전도성 접착제 및 열 충진재로 사용되어 전자 부품의 방열 및 전도성을 향상시킵니다. 2. 새로운 에너지와 배터리 리튬이온전지 음극재료:나노실리콘 분말은 기존 흑연 음극을 대체...
    더 읽어보기
< 21 22 23
[  총  23  페이지]
메시지를 남겨주세요 문의는 여기로
귀하의 필요에 따라 올바른 솔루션을 제공하고 효율적인 서비스를 제공하며 필요한 제품 정보 및 요구 사항에 대한 메시지를 남기고 지금 사용자 정의하십시오!