재료의 소결은 몸체의 치밀화와 몸체 내 입자의 성장이라는 적어도 두 가지 과정을 포함합니다. 곡물의 수명은 일반적으로 곡물 경계의 이동을 통해 달성됩니다. 입자 성장 동역학의 고전 이론에 따르면 곡선형 입자 경계의 두 측면 사이의 자유 에너지 차이는 인터페이스가 곡률 중심을 향해 이동하도록 하는 원동력입니다. 공백에서는 대부분의 결정립계가 곡선입니다. 각 입자의 중심에서 일부 입자 경계는 오목하고 다른 입자 경계는 볼록합니다. 볼록한 표면의 계면 에너지는 오목한 표면의 계면 에너지보다 크므로 원자 또는 이온이 볼록한 표면에서 오목한 표면으로 전이되어 입자 경계가 볼록한 표면의 곡률 중심을 향해 이동하게 됩니다. 결과적으로 오목한 결정립 경계를 가진 일부 결정립은 성장하는 반면, 볼록한 결정립 경계를 가진 다...
더 읽어보기
동박적층판에서는 구형 실리콘 미세분말의 유동성이 우수하여 동박적층판의 수지 매트릭스에 높은 충진을 달성할 수 있어 생산원가, 기본열팽창계수, 유전율을 더욱 절감할 수 있습니다. . 고주파 동박적층판에 가장 일반적으로 사용되는 시스템 중 하나는 높은 충진량을 필요로 하는 PTFE 수지입니다. 그러나 충진량이 증가할수록 시스템의 점도가 급격하게 증가하고, 재료의 유동성과 투과성이 저하됩니다. 구형 실리콘 미세 분말은 수지에 분산되기 어렵고 응집 문제가 발생하기 쉽습니다. 위와 같은 문제를 해결하기 위해서는 일반적으로 구형 실리콘 미분말의 표면 처리가 필요합니다. 표면 처리 변형에 의한, 구형 실리콘 미세 분말 간의 상호 작용을 줄여 응집을 효과적으로 방지하고 전체 시스템의 점도를 낮추며 시스템의 유동성을 향상시...
더 읽어보기
회사의 나노 산화철 분말을 구매 한 후 고객은 테스트 중에 입자 크기가 더 크다는 것을 발견했습니다 그 이유는 무엇입니까? 나노 분말의 입자 크기는 매우 미세하기 때문에 응집하기 쉽기 때문에 시험 된 큰 입자 크기는 응집 후 입자 크기입니다 그래서 우리는 어떻게 효과적으로 할 수 있습니까? 나노 산화철 분말 분산? 다음으로, 우리는 산화철을 분산시키기 위해 초음파 파를 사용하는 방법을 소개합니다 (Fe3O4) 분말, 단계는 다음과 같습니다.1 재료와 장비를 준비하십시오-Nano Fe3O4 분말-분산 매체 : 예 : 물, 에탄올 등-Dispersants : SDS, CTAB 등과 같은 (선택 사항)-ultrasonic 청소 기계 또는 초음파 프로브2 서스펜션을 준비하십시오-NANO Fe3O4 분말은 분산 배지...
더 읽어보기
이산화티타늄 높은 화학적 안정성, 무독성, 그리고 우수한 광전 성능을 특징으로 하며, 특히 루틸형 이산화티타늄은 높은 표면 활성을 가지고 있어 배터리 소재 개질에 매우 적합합니다. 폴리에틸렌 글리콜과 마찬가지로, 이산화티타늄의 도입은 리튬 철 인산철 자체의 부족한 에너지 밀도와 속도 특성을 보완하기 위한 것입니다. 리튬 철 인산염에 이산화 티타늄을 첨가하는 세 가지 주요 방법은 다음과 같습니다. 1. 도핑 변형. 나노 크기의 이산화티타늄 입자를 리튬 철 인산염 격자에 도입함으로써 이종 구조를 형성하여 재료의 전도도를 크게 향상시킬 수 있습니다. 실험 결과, 1%의 이산화티타늄을 도핑하면 리튬 철 인산염의 전자 전도도가 두 자릿수(zero) 증가하고 속도 성능이 15%에서 30% 향상되는 것으로 나타났습니다....
더 읽어보기
하지만 구형 실리콘 미세 분말 구형이고 유동성이 우수하지만, 유기 매트릭스 재료와 혼합하여 무기 필러로 사용할 경우 상용성이 낮고 분산이 어려운 문제가 여전히 존재합니다. 따라서 이러한 문제를 해결하기 위해 표면 개질이 필수적입니다. 구형 실리콘 미세분말의 표면 개질 표면 개질은 분말 표면에 특정 작용기 또는 코팅을 도입하여 표면 특성을 변화시키고, 수지, 고무, 플라스틱과 같은 매트릭스 재료에서의 분산성과 유동성을 향상시키며, 매트릭스 재료와의 상용성을 향상시켜 궁극적으로 복합 재료의 성능을 향상시키는 것을 의미합니다. 동시에, 표면 개질은 구형 실리콘 미세 분말 표면에 특정 기능을 가진 작용기를 도입하여 새로운 물리적, 화학적, 기계적 특성을 생성하고 특정 응용 분야에서 구형 실리콘 미세 분말의 기능을 ...
더 읽어보기